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SM1.1. The effective absorption coefficient. The heat source,S, on the6

right hand side of (2.1) is given by S = H/(ρF Cp), where H is the heat power7

density deposited into the gas due to the interaction between the laser and the trace8

gas [SM1]. Because quartz tuning forks are sharply resonant, we may assume that H9

is time harmonic. As in Petra [SM2], we model the laser as a Gaussian beam so that10

(SM1.1) S = <
[
CS e

−r2/2σ2

e−i ω t
]
,11

where <(w) denotes the real part of a complex number w, r is the radial distance12

from the axis of the beam, σ is the beam width, ω is the angular frequency of the13

periodic interaction between the laser and the trace gas, and14

(SM1.2) CS =
αeff

ρFCp

WL

4πσ2
.15

Here WL is the laser power, and αeff is the effective absorption coefficient.16

We now discuss how the effective absorption coefficient, αeff, depends on the17

ambient pressure, P0. In a trace gas sensing experiment, the wavelength of the laser18

is chosen to excite a particular absorption line of the trace gas. By the Beer-Lambert19

law, the absorption per unit length of light intensity at wavelength, λ, is of the form20

(SM1.3) α(λ) = Aκ(λ)N,21

where A is the line strength, κ is the line-shape function, and N is the number density22

of the trace gas. In a typical trace gas sensing experiment, molecules of a trace gas23

such as ammonia are mixed with molecules of nitrogen in a fixed molecular ratio.24

This ratio is preserved when the gas sample is depressurized for experiments at low25

ambient pressure. Consequently, by the ideal gas law, the number density, N , of26

the trace gas is proportional to the ambient pressure, P0. Furthermore, because of27

pressure-broadening effects, the width of the line-shape function also depends on P0.28

In a QEPAS or ROTADE trace gas sensor, the wavelength of the laser is sinusoidally29

modulated about the central wavelength, λc, of a targeted absorption line, so that30

λ(t) = λc + λamp sin(2πft/2), where f is the resonance frequency of the tuning fork.31

Therefore, as in Petra et al. [SM2], the effective absorption coefficient is of the form32

(SM1.4) αeff = ÃP0

∣∣∣∣∫ π

−π
κ(λc + λamp sin s)e2is ds

∣∣∣∣ ,33
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for some pressure-independent constant, Ã. If we assume that the targeted absorption34

line is well separated from the other absorption lines, it is reasonable to assume that35

the line-shape function is a Lorentzian, with a half width at half maximum, γ, that36

depends on P0. If the laser modulation amplitude is chosen so that λamp = βγ, then37

(SM1.5) αeff(β) = ÃP0

∣∣∣∣∫ π

−π

e2is

1 + (β sin s)2
ds

∣∣∣∣ ,38

where the integrand is now independent of P0 and is maximized at β ≈ 2. Under39

these assumptions, we conclude that40

(SM1.6) CS =
αeff,refR0T0

Pref Cp

WL

4πσ2
,41

where αeff,ref is the absorption coefficient at ambient pressure, Pref, and where R042

is the ideal gas constant and T0 is the ambient temperature. We caution however43

that in practice the targeted absorption line may not be sufficiently well separated44

from neighbouring lines to ensure the accuracy of (SM1.6) once the ambient pressure45

exceeds some threshold [SM3].46

SM1.2. Eigenfrequency of the undamped structure. We compute the47

eigenfrequency of the undamped structure by solving the eigenproblem48

(SM1.7)

∇ · C[∇u] + ρS ω
2
0 u = 0 in ΩS ,

u = 0 on ∂ΩFixed
S ,

C[∇u]n = 0 on ∂ΩFree
S ,

49

where n is the normal vector field on ∂ΩFree
S and ω0 is an undamped eigenfrequency50

to be determined. With the annular geometry, the eigenproblem (SM1.7) reduces to51

(SM1.8)

r2 u′′ + r u′ +
(
κ2

0 r
2 − 1

)
u = 0, for R1 ≤ r ≤ R2,

u = 0, for r = R2,

λS
r
u+ (λS + 2µS)u′ = 0, for r = R1,

52

where κ0 =
√

ρS ω2
0

λS+2µS
and λS , µS are the Lamé parameters. The general solution53

of (SM1.8) is54

55

(SM1.9) u(r) = d1 J1(κ0 r) + d2 Y1(κ0 r),56

57

where d1 and d2 are arbitrary constants. The undamped eigenfrequencies, ω0, corre-58

spond to values of κ0 for which (SM1.8) has a nontrivial solution, i.e., to nontrivial59

solutions of the boundary interface condition equations60

(SM1.10) J1(κ0R2) Y1(κ0R2)

ξ1 J1(κ0 R1)
R1

− κ0 ξ2 J2(κ0R1) ξ1 Y1(κ0 R1)
R1

− κ0 ξ2 Y2(κ0R1)

d1

d2

 =

0

0

 ,61

where ξ1 = 2(λS + µS) and ξ2 = (λS + 2µS). We use a numerical root finding62

method to determine the smallest positive value of ω0 for which the determinant of63

the matrix in (SM1.10) is zero.64

This manuscript is for review purposes only.



SUPPLEMENTARY MATERIALS: MODELING OF TRACE GAS SENSORS SM3

SM1.3. Interface and boundary conditions for the two-way coupled65

model. In this appendix we provide formulae for the entries in the matrix A and66

vector F in (3.18) for the two-way coupled model.67

The first row of A, which is obtained using the continuity condition (2.6) for68

the temperature at the interface, together with formulae (3.10) and (3.12) for the69

temperature in the fluid and in the structure, is given by,70

a11 = − J0(κp R̃1F ), a12 = − J0(κt R̃1F ), a13 = J0(λ R̃1S), a14 = H
(1)
0 (λ R̃1S),7172

and73

F1 = c1(R̃1F ) J0(κpR̃1F ) + c2(R̃1F ) H
(1)
0 (κp R̃1F ) + c3(R̃1F ) J0(κtR̃1F )74

+ c4(R̃1F ) H
(1)
0 (κt R̃1F ),7576

where, R̃1F = R1/rc with rc = c/ω and R̃1S = R1/rs with rs =
√

λS+2µS

ρS ω2 .77

The second row of A, which is obtained by assuming the temperature at the outer78

surface of the annulus is zero, together with formula (3.12) for the temperature in the79

structure, is given by80

a23 = J0(λ R̃2) and a24 = H
(1)
0 (λ R̃2),8182

where R̃2 = R2/rs.83

The third row of A, which is obtained using the continuity of heat flux condi-84

tion (2.7) at the fluid-structure interface, together with formulae (3.10) and (3.12) for85

the temperature in the fluid and in the structure, is given by86

a31 = −KF

rc
κp J1(κp R̃1F ), a32 = −KF

rc
κt J1(κt R̃1F ),87

a33 =
KS

rs
λ J1(λ R̃1S), a34 =

KS

rs
λ H

(1)
1 (λ R̃1S).88

89

and90

F3 =
KF

rc

[
c′1(R̃1F ) J0(κpR̃1F )− κp c1(R̃1F ) J1(κpR̃1F ) + c′2(R̃1F ) H

(1)
0 (κp R̃1F )91

−κp c2(R̃1F ) H
(1)
1 (κp R̃1F ) + c′3(R̃1F ) J0(κtR̃1F )− κt c3(R̃1F ) J1(κtR̃1F )92

+c′4(R̃1F ) H
(1)
0 (κt R̃1F )− κt c4(R̃1F ) H

(1)
1 (κt R̃1F )

]
.93

94

The fourth row of A is obtained by using the fact that the structure is clamped at95

the outer boundary, u(R2) = 0. Together with the formula (3.6) for the displacement96

of the structure, we obtain97

a43 = λπ
2

[
J1(κu R̃2)

∫ R̃2

R̃1S

sY1(κu s) J1(λ s)ds− Y1(κu R̃2)

∫ R̃2

R̃1S

s J1(κu s) J1(λ s)ds

]
98

a44 = λπ
2

[
J1(κuR̃2)

∫ R̃2

R̃1S

sY1(κus)H
(1)
1 (λs)ds− Y1(κuR̃2)

∫ R̃2

R̃1S

sJ1(κus)H
(1)
1 (λs)ds

]
99

a45 = J1(κu R̃2), a46 = Y1(κu R̃2).100101
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The fifth row of A is obtained from the interface condition (3.3) for the fluid102

pressure and temperature on the structure. Together with the formulae (3.9), (3.10)103

and (3.3) for the pressure and temperature in the fluid and displacement of the struc-104

ture, we obtain105

a51 =
p0

rc
κp J1(κp R̃1F ) [(1− i γ Λ)mp + i γ Λ] , a55 = uc ρF ω

2 J1(κu R̃1S)106

a52 =
p0

rc
κt J1(κt R̃1F ) [(1− i γ Λ)mt + i γ Λ] , a56 = uc ρF ω

2 Y1(κu R̃1S),107
108

and109

F5 = (1− i γ Λ)
[
mp c

′
1(R̃1F )J0(κp R̃1F )−mp κp c1(R̃1F )J1(κp R̃1F )110

+mp c
′
2(R̃1F )H

(1)
0 (κp R̃1F )−mp κp c2(R̃1F )H

(1)
1 (κp R̃1F ) +mt c

′
3(R̃1F )J0(κt R̃1F )111

−mtκtc3(R̃1F )J1(κt R̃1F ) +mtc
′
4(R̃1F )H

(1)
0 (κt R̃1F )−mt κtc4(R̃1F )H

(1)
1 (κtR̃1F )

]
112

+ i γ Λ
[
c′1(R̃1F )J0(κp R̃1F )− κp c1(R̃1F )J1(κp R̃1F ) + c′2(R̃1F )H

(1)
0 (κp R̃1F )113

−κp c2(R̃1F )H
(1)
1 (κp R̃1F ) + c′3(R̃1F )J0(κt R̃1F )− κt c3(R̃1F )J1(κt R̃1F )114

+c′4(R̃1F )H
(1)
0 (κt R̃1F )− κt c4(R̃1F )H

(1)
1 (κt R̃1F )

]
.115

116

The sixth row of A is obtained by the interface condition (2.16) on the structure117

due to the fluid. Together with the formulae (3.9), (3.10), (3.12), and (3.3) for the118

pressure and temperature in the fluid and the temperature and displacement in the119

structure, we obtain,120

a61 = p0mp J0(κpR̃1F ), a62 = p0mt J0(κtR̃1F ),121

a63 = −ζ1 p0

α
J0(λ R̃1S), a64 = −ζ1 p0

α
H

(1)
0 (λ R̃1S),122

123124
125

a65 = (ζ0 + iω ζ2)
uc
rs
ζ4 + (λS + i ω ζ3)

uc

rs R̃1S

J1(κu R̃1S),126

a66 = (ζ0 + iω ζ2)
uc
rs
ζ5 + (λS + i ω ζ3)

uc

rs R̃1S

Y1(κu R̃1S),127

128

where,129

ζ0 = (λS + 2µS), ζ1 = αS(3λS + 2µS), ζ2 = (ηF +
4

3
µF ), ζ3 = (ηF −

2

3
µF ),130

131
132

ζ4(R̃1S) = κu

[
1

κu R̃1S

J1(κu R̃1S)− J2(κu R̃1S)

]
,133

ζ5(R̃1S) = κu

(
1

κu R̃1S

Y1(κu R̃1S)− Y2(κu R̃1S)

]
,134

135

and136

F6 = −p0

[
mp c1(R̃1F ) J0(κp R̃1F ) +mp c2(R1F )H

(1)
0 (κp R̃1F )137

+mt c3(R̃1F ) J0(κt R̃1F ) +mt c4(R̃1F )H
(1)
0 (κt R̃1F )

]
.138

139
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SM1.4. Interface and Boundary conditions for the one-way coupled140

model. For the one-way coupled model, the last two rows of A and F are given as141

follows. The fifth row of A, which is obtained using the zero Neumann boundary142

condition for the fluid pressure at the fluid-structure interface, together with the143

formula (3.9) for the pressure in the fluid, is given by144

a51 = mp κp J1(κp R̃1F ) and a52 = mt κt J1(κt R̃1F ),145146

and147

F5 = mp c
′
1(R̃1F )J0(κp R̃1F )−mp κp c1(R̃1F )J1(κp R̃1F ) +mp c

′
2(R̃1F )H

(1)
0 (κp R̃1F )148

−mp κp c2(R̃1F )H
(1)
1 (κp R̃1F ) +mt c

′
3(R̃1F )J0(κt R̃1F )−mt κt c3(R̃1F )J1(κt R̃1F )149

+mt c
′
4(R̃1F )H

(1)
0 (κt R̃1F )−mt κt c4(R̃1F )H

(1)
1 (κt R̃1F ).150151

The sixth row is obtained using the interface condition (2.16) on the structure due to152

the fluid. Together with formulae (3.9), (3.10), (3.12), and (3.3) for the pressure and153

temperature in the fluid and the temperature and displacement in the structure, we154

obtain,155

a61 = p0mp J0(κpR̃1F ), a62 = p0mt J0(κtR̃1F ),156

a63 = −ζ1 p0

α
J0(λ R̃1S), a64 = −ζ1 p0

α
H

(1)
0 (λ R̃1S),157

a65 =
uc
rs
ζ0 ζ5 +

uc

rs R̃1S

λS J1(κu R̃1S), a66 =
uc
rs
ζ0 ζ4 +

uc

rs R̃1S

λS Y1(κu R̃1S),158

159

and160

F6 = −p0

[
mp c1(R̃1F ) J0(κp R̃1F ) +mp c2(R1F )H

(1)
0 (κp R̃1F )161

+mt c3(R̃1F ) J0(κt R̃1F ) +mt c4(R̃1F )H
(1)
0 (κt R̃1F )

]
.162

163
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