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SUPPLEMENTARY MATERIALS: A TWO-WAY COUPLED MODEL
OF VISCO-THERMO-ACOUSTIC EFFECTS IN PHOTOACOUSTIC
TRACE GAS SENSORS*

ALI MOZUMDERT, ARTUR SAFIN#, SUSAN MINKOFFf, AND JOHN ZWECKT

SM1. Supplementary Materials.

SM1.1. The effective absorption coefficient. The heat source, S,on the
right hand side of (2.1) is given by S = H/(pr C,), where H is the heat power
density deposited into the gas due to the interaction between the laser and the trace
gas [SM1]. Because quartz tuning forks are sharply resonant, we may assume that H
is time harmonic. As in Petra [SM2], we model the laser as a Gaussian beam so that

(SML.1) S =R |Cge /20" gmiwt]
where R(w) denotes the real part of a complex number w, r is the radial distance

from the axis of the beam, ¢ is the beam width, w is the angular frequency of the
periodic interaction between the laser and the trace gas, and

et W
(SM1.2) Cs = orCy Aro?”
Here Wy, is the laser power, and g is the effective absorption coefficient.

We now discuss how the effective absorption coefficient, aeg, depends on the
ambient pressure, Py. In a trace gas sensing experiment, the wavelength of the laser
is chosen to excite a particular absorption line of the trace gas. By the Beer-Lambert
law, the absorption per unit length of light intensity at wavelength, A, is of the form

(SM1.3) a(\) = Ax(\)N,

where A is the line strength,  is the line-shape function, and N is the number density
of the trace gas. In a typical trace gas sensing experiment, molecules of a trace gas
such as ammonia are mixed with molecules of nitrogen in a fixed molecular ratio.
This ratio is preserved when the gas sample is depressurized for experiments at low
ambient pressure. Consequently, by the ideal gas law, the number density, IV, of
the trace gas is proportional to the ambient pressure, Py. Furthermore, because of
pressure-broadening effects, the width of the line-shape function also depends on P.
In a QEPAS or ROTADE trace gas sensor, the wavelength of the laser is sinusoidally
modulated about the central wavelength, \., of a targeted absorption line, so that
A(t) = Ac + Aamp sin(27 ft/2), where f is the resonance frequency of the tuning fork.
Therefore, as in Petra et al. [SM2], the effective absorption coefficient is of the form

SM1.4 Qoff = EPO K(Ae + Aamp sin §)e? ds| |
( p

—T
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for some pressure-independent constant, A. If we assume that the targeted absorption
line is well separated from the other absorption lines, it is reasonable to assume that
the line-shape function is a Lorentzian, with a half width at half maximum, -, that
depends on Fy. If the laser modulation amplitude is chosen so that Aymp = B, then

. ™ 6215
(SM15) Oéeﬁ‘(ﬁ) = AP() [ m ds 5

where the integrand is now independent of Py and is maximized at 8 = 2. Under
these assumptions, we conclude that

Qeff ref ROTO WL
Pt Cp  4mo?’

(SM1.6) Cs =

where aegrer is the absorption coefficient at ambient pressure, P, and where Ry
is the ideal gas constant and 7y is the ambient temperature. We caution however
that in practice the targeted absorption line may not be sufficiently well separated
from neighbouring lines to ensure the accuracy of (SM1.6) once the ambient pressure
exceeds some threshold [SM3].

SM1.2. Eigenfrequency of the undamped structure. We compute the
eigenfrequency of the undamped structure by solving the eigenproblem

V-ClVu]+pswiu =0 in Qg,
(SM1.7) u=0 on 9QLxd
ClVuln =0 on 0oQ&ee

where n is the normal vector field on 9Q5° and wy is an undamped eigenfrequency
to be determined. With the annular geometry, the eigenproblem (SM1.7) reduces to

rzu”—i-ru/—i—(fi%rz—l)uzo, for Ry <r < Ro,
(SM1.8) u = 0, for r = Ra,
A
75u+(/\s+2,us)u’20, for r = Ry,
where kg = )\5 i;is and Ag, pgs are the Lamé parameters. The general solution

of (SM1.8) is
(SM1.9) u(r) = di Ji(kor) +d2 Yi(ko 1),

where dy and do are arbitrary constants. The undamped eigenfrequencies, wq, corre-
spond to values of kg for which (SM1.8) has a nontrivial solution, i.e., to nontrivial
solutions of the boundary interface condition equations
(SM1.10)

Ji(ko R2) Y1 (ko Ra2) dq 0

)

51‘]11(%7'?1{1)—%052 Ja(ro Ry) 51}/11(137’{101{1)_“052}/2('%01%1) do 0

where & = 2(As + pg) and & = (As + 2us). We use a numerical root finding
method to determine the smallest positive value of wy for which the determinant of
the matrix in (SM1.10) is zero.
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SM1.3. Interface and boundary conditions for the two-way coupled
model. In this appendix we provide formulae for the entries in the matrix A and
vector F in (3.18) for the two-way coupled model.

The first row of A, which is obtained using the continuity condition (2.6) for
the temperature at the interface, together with formulae (3.10) and (3.12) for the
temperature in the fluid and in the structure, is given by,

ain = — Jo(kp Rir), a1z =— Jo(ki Rip), a1z = Jo(ARis), ais= Hél)()\ Ris),
and

Fy =c1(Rir) Jo(kpRip) + ca(Rir) H((]l)(ﬂp Rip) + c3(Rir) Jo(keRir)
+ea(Rup) HY (ki Rup),

where, f{lp = Ry/r. with r. = ¢/w and }Nﬁs = Ry/rs withry = 1/%.

The second row of A, which is obtained by assuming the temperature at the outer
surface of the annulus is zero, together with formula (3.12) for the temperature in the
structure, is given by

ag23 = J0(>\R2) and A24 = H(gl)()\ R2)7

where Ry = Ry /rs.

The third row of A, which is obtained using the continuity of heat flux condi-
tion (2.7) at the fluid-structure interface, together with formulae (3.10) and (3.12) for
the temperature in the fluid and in the structure, is given by

K = K .
as1 = — - Kp Jl(K’P RIF)? az2 = — ’]”'F Kt J]_(K}t R]_F),
K - K .
as3 = TS A Ji(A Ris), azqy = TS A Hl(l)()\Rw).
and
LA PN ; ; ; (B W F
Fy = i (Rir) Jo(kpRar) — kp c1(Rir) Ji(kpRar) + co(Rap) Hy ' (kp Rir)

c

—kip ca(Rip) H{" (ki Rup) + ch(Rir) Jo(keRip) — e ca(Rir) Ji(kiBap)
+&,(Rup) HSY (k4 Bap) — iy ca(Rop) HY (kg Rup)| .
The fourth row of A is obtained by using the fact that the structure is clamped at

the outer boundary, u(R3) = 0. Together with the formula (3.6) for the displacement
of the structure, we obtain

RQ - R2

Qg3 = ’\7” [Jl(/su R») /1:2 sY1(ky 8) J1(As)ds — Y1 (ky R2) /é sJ1(ku 8) J1(A s)ds]
1S 1S
R R

aug = [Jl(,@u Ry) /R Y1 (rus)HD (As)ds — Vi (o o) /R le(nus)Hfl)(As)dS]
1S 18

ass = Ji(ky Ra), ass = Yi(ky Ro).
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The fifth row of A is obtained from the interface condition (3.3) for the fluid
pressure and temperature on the structure. Together with the formulae (3.9), (3.10)
and (3.3) for the pressure and temperature in the fluid and displacement of the struc-
ture, we obtain

as1 = Po kp J1(kp Rip) [(L—iyA)my, +iyA], ass = ueprw? Ji(ky Ris)

c

G52 = @Ht Ji(ke Rip) (I =iy A)me+iy A, ass = e prw® Yi(ky Ras),

c

and
Fs=(1—ivA) [mp &\ (Rup)Jo(ky Rup) — my iy c1(Rup) Iy (5p Rip)
iy, ¢ (Rap) HS (1 Rip) = my iy eo(Rap) HY (5 Rup) +ma cy(Rap) Jo(ky Rir)
—myrires(Rip)Ji (ke Rip) + thﬁL(RlF)Ho(l)(Ht Rip) — my "ftc4(R1F)H1(1) (keR1r)
iy A [l (Rur) oly Rir) = iy e (Bap) (s Rar) + ch(Bup) HY (1 B )
—kp ca(Rip)HM (kp Rip) + cy(Rip)Jo(ke Rip) — kg cs(Rip)J1 (ke Rip)
ey (Ryp)HSY (ke Ryp) — kg ca(Ryp ) HY (k4 Byp) |

The sixth row of A is obtained by the interface condition (2.16) on the structure
due to the fluid. Together with the formulae (3.9), (3.10), (3.12), and (3.3) for the
pressure and temperature in the fluid and the temperature and displacement in the
structure, we obtain,

agy = pomy Jo(kpRir), asa = pom: Jo(kiRir),
agz = *Clofjo Jo(A Rys), aps = 7% Hél)(A Ris),
. Ue . Ue [
ags = (Co +iwCa) — G4 + (As +iw(3) —=— Ji(ky Ris),
Ts Ts RlS
. Ue . Ue g
age = (Co +iwC2) — G5 + (As +iw (3) —=— Y1(ky Ris),
Ts Ts RlS’
where,
4 2
o= (As+2us), ¢ = as(3BAs+2us), G = (nr+ gNF)a G = (nr — guF%
. 1 . .
§4(R15) = Ru |: = Jl(’{u RlS) - J2(’€u RlS):| )
Ry RIS
- 1 . .
<5(RIS) = Ru ( = Yl (Ku RIS) - Yv2(’£u RIS):| 5
Ry RlS
and

Fs = —po [mp Cl(élp) Jo(lip Elp) +my Cg(RlF) Hél)(lip R1F>

+my Cg(filp) Jo(/it E1F) —+ my C4(E1F) H(()l)(/it Elp)} .
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SM1.4. Interface and Boundary conditions for the one-way coupled
model. For the one-way coupled model, the last two rows of A and F are given as
follows. The fifth row of A, which is obtained using the zero Neumann boundary
condition for the fluid pressure at the fluid-structure interface, together with the
formula (3.9) for the pressure in the fluid, is given by

as1 = mp Kp J1(Kp ]:21F) and aze = my ke J1(Ke Rlp)7
and
Fs = my & (Rup) Jo(kp Rap) — my ki 1 (Rip)Jy (ke Rup) + my cy(Rup)HS (kp Rup)
— My Kp C2(R1F)H1(1)(f€p Rip) 4+ my Cé(RlF)Jo(Kt Rip) — my ks c3(Rip)Jy (ke Rip)
+my & (Byp)HSD (k4 Ryg) — my ke ca(Rop) HY (ke Ryp).

The sixth row is obtained using the interface condition (2.16) on the structure due to
the fluid. Together with formulae (3.9), (3.10), (3.12), and (3.3) for the pressure and
temperature in the fluid and the temperature and displacement in the structure, we
obtain,

ag1 = pomy Jo(kpRir), agz = pomy Jo(kiRip),

sy = _C1O];0 To(A Bus), gy = _% HY (A Rys),

ags = jf—:co G+ rs“fls As Ji(ku Rus), ags = jf—:co G+ TS”fIS As Yi (b Bas),
and

FG = —Po [mp Cl(éur) Jo(lip ﬁlp) + mpy CQ(R]F) Hél)(lip ﬁlp)

ert Cg(ﬁlp) Jo(fit élp) + my C4(E1F) H(()l)(fit Elp):| .
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