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Abstract 

An experimental recirculating loop is traditionally used to study straight-line 

optical fiber communication systems.  However, random polarization effects within a 

loop system are very different from those in a line because of the loop’s periodicity.  

Experimentally, a device known as a polarization scrambler makes the loop model 

behave more like a straight line.  The polarization scrambler accomplishes this by 

randomly rotating the polarization state of the light after each round trip of the loop.  

However, the distribution of these random rotations is biased.  In this work, we use a 

biased model for the polarization scrambler to simulate the dependence of system 

performance on the biasing strength. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 2



Table of Contents 

Introduction ...................................................................................... 4 - 5 
 
The Stokes Model for the Polarization State of Light ...................... 5 - 9 
 
Overview of an Optical Fiber Communication System .................... 9 
 
Modeling an optical fiber communication system ............................ 9 - 10 
 
Simulating the loop model ................................................................ 11 - 13 
 
Computing total PDL within the simulation model .......................... 13 - 15 
 
A real polarization scrambler ............................................................ 15 - 19 
 
Modeling a real or biased polarization scrambler ............................. 19 - 20 
 
 
Understanding the effects of a biased rotation model on  
signal propagation .............................................................................. 21 - 24 
 
Computer simulation of the entire system ......................................... 24 - 26 
 
Galtarossa’s Formula .......................................................................... 26 
 

Results: PDFs and System Statistics.................................................... 26 – 47 

Static Case ................................................................... 27 - 38   

Abrupt Case ................................................................. 38 - 47 

 

 
 
 
 
 
 
 
 
 
 

 3



 

Introduction 

An optical fiber communication system is used to transmit data at very high 

speeds over long distances, for example from Baltimore to Paris.  An optical signal is 

used to transmit the data using a sequence of light pulses.  Since, binary data is 

transmitted, the power of each pulse determines whether a one or zero is transmitted. 

In an optical fiber communication system, the fiber attenuates the signal being 

transmitted.  Consequently, the power decreases as the signal propagates through the 

fiber over long distances.  Amplifiers placed at regular intervals within the system 

periodically restore the power. The gain in the amplifiers compensates for loss in the 

preceding segment of fiber.  In addition to restoring power, amplifiers add noise which 

causes errors.  An error occurs when a transmitted one is received as a zero, or vice-

versa.  Nevertheless, optical fiber is a very good transmission medium and errors are 

extremely rare.  An important research problem is to understand why errors occur and to 

measure the bit error ratio (BER) which is the probability that an error would occur.   

In addition to noise, there are other effects called the polarization effects that can 

lead to errors.  In particular, the signal can be further attenuated by an amount that 

depends on the polarization state of the light.  This situation is called polarization 

dependent loss (PDL), because power loss depends on the polarization state.  Amplifiers 

are the main source of PDL.  The PDL in each amplifier is very small.  However, as data 

propagates from transmitter to receiver it encounters many amplifiers and so the total 

PDL can be relatively large.  The larger the total PDL the worse the bit error ratio can be.   
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Because an optical fiber communication system is difficult to study due to the rare 

occurrence of the errors and because the system ranges over long distances, researchers 

use a simple experimental model to facilitate the study of the system.  This model is a 

recirculating loop that is between 100 and 500 km long.  To experimentally emulate 

transmission over thousands of kilometers, the light travels around the loop many times 

before it is received.   

A device called the polarization scrambler (PS) makes the loop behave more like a 

straight-line system.  For each circulation of the loop, the polarization scrambler has a 

different random setting; i.e. it rotates light in a different manner.  The probability density 

function (pdf) of these rotations is uniformly distributed for an ideal polarization 

scrambler.  However, a real polarization scrambler does not have a uniformly distributed 

pdf.  Its precise distribution function is not known.  From our discussion so far, we know 

that the pdf of the total PDL in a loop system depends on the pdf of the rotations 

performed by the PS.  A major goal of this work is to quantify the degree to which the 

pdf of total PDL depends on our model of a real PS. 

 

The Stokes Model for the Polarization State of Light 

Light can be described in terms of its polarization state.  The light signal 

generated in the transmitter of an optical communication system is polarized.  Polarized 

light is light whose electric field is a simple periodic function of position and time.  

Polarized light can be classified as linearly polarized, circularly polarized or elliptically 

polarized.   
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For linearly polarized light in an optical fiber, the magnitude and sign of the 

electric field vary with time t and distance z along the fiber, but the electric field vector is 

in a fixed direction transverse to the fiber (Hecht).  Examples of linearly polarized light 

are horizontal and vertically polarized light.  The electric field vector of horizontally 

polarized light is  

   
E1(z,t) = i

^
Eoxcos(kz − ωt)                    (1a)   

while that of vertically polarized light is 

     
   
E2 (z,t) = j

^
Eoycos(kz − ωt + φ).              (1b)

Here = (1, 0, 0) and = (0, 1, 0) are unit vectors in the xy-plane, perpendicular to the 

propagation direction z along the fiber.  The parameter k is the wave number and 

^
i

^
j

ω  is the 

frequency of the light.  The angle φ  is a relative phase difference between   and  .  

The parameters 

E1 E2

 
Eox and  are the amplitudes.  In general, light that is linearly 

polarized oscillates in a plane whose normal is perpendicular to the direction of 

propagation. 

 
Eoy

 The electric field of arbitrarily polarized light can be expressed in the form 

, for some choice of the parameters  E3 = E1 + E2 Eox , and Eoy φ .  If φ  = (2n + 1)π, 

where n is an integer, then 

 

   
   
E3 = E1 + E2 = i

^
Eox + j

^
Eoy

⎛
⎝⎜

⎞
⎠⎟

cos(kz − ωt)                   (1c)

 6



 is linearly polarized because the amplitude vector, given by , has a fixed 

direction.  If 

i
^

Eox + j
^

Eoy

φ  = -π/2 + 2nπ, where n is an integer and Eox = Eoy = Eo  then  

  
   
E3 = E1 + E2 = Eo i

^
cos(kz − ωt) +  j

^
sin(kz − ωt)

⎛
⎝⎜

⎞
⎠⎟

.         (1d)

If the electric field is given by (1d) we say that the light is circularly polarized (Hecht).  

Polarized light that is neither linearly nor circularly polarized is called elliptically 

polarized. 

If we can successfully model the evolution of an optical signal as it propagates 

through optical fiber, then we might be able to predict the behavior of a real system.  

Stokes parameters provide a reduced model for describing an optical signal.  They 

provide a natural and simple way of representing the polarization state of light.  There are 

four Stokes parameters that are defined in terms of irradiances.  Irradiance is the time-

averaged value of the magnitude of the Poynting vector, which is proportional to the 

amplitude squared of the electric field.  This time-average is taken over many pulses of 

light (Hecht). 

Stokes parameters can be measured experimentally.  In an experiment to measure 

the Stokes parameters, a beam of light is split into four identical beams.  The first beam 

encounters an isotropic filter, the second encounters a horizontal polarizer, the third 

encounters a linear polarizer whose axis of transmission is 45o, and the fourth encounters 

a circular polarizer (Hecht) (see figure 1).  The transmitted irradiances from each filter 

can be measured.  Let us denote the transmitted irradiances through the first, second, 
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third and fourth filters by  respectively.   The four Stokes parameters are 

then defined as 

I0 , I1, I2 and I3

                                                

S0 = 2I0

S1
* = 2I1 − 2I0

S2
* = 2I2 − 2I0    

S3
* = 2I3 − 2I0 .

 

   

 

 

 

                                                                                                                      

beam of light 

split into 4 equal parts

filter 

I0

I1

I2

I3

Figure 1  
Experimental setup to measure Stokes parameters. 

 

 

 

 

 

The Stokes parameter  is the average power of a signal.  By normalizing the average 

power, we can assume that S  has a maximum value of 1.  The vector  is 

called the Stokes vector.  The normalized Stokes vector is  

S0

0 (S1
*, S2

*, S3
*)

  
(S1, S2 , S3) =

S1
* + S2

* + S3
*

S1
* + S2

* + S3
*

.                  (2)    

Therefore, the polarization state ( of an optical signal can be represented as a 

point on a unit sphere called the Poincare sphere.  In the Stokes representation, vertically 

S1, S2 , S3)
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polarized light, horizontally polarized light, and circularly polarized light are 

 respectively (Hecht). (−1, 0, 0),  (1, 0, 0) and (0, 0, ±1)

Recall that polarized light is light whose electric field vector has a simple periodic 

dependence on position and time.  The other extreme is unpolarized light.  Its electric 

field vector undergoes a rapid succession of different random polarization states (Hecht).  

A natural light source is an example of unpolarized light.  Partially polarized light is a 

mixture of polarized and unpolarized light.  The degree of polarization (DOP) is defined 

by DOP = 
 

S1
*2 + S2

*2 + S3
*2

              S0

.  If DOP = 1 then the optical signal is polarized, while if 

DOP = 0 then the signal is unpolarized.  If  0 < DOP < 1 then the signal is partially 

polarized. 

 

Overview of an Optical Fiber Communication System 

 The basic components of an optical fiber communication system are a transmitter, 

optical fiber, optical amplifier and receiver.  At the transmitter a modulator converts an 

electrical signal into an optical signal.   The optical signal propagates through optical 

fiber to the receiver.  Optical fiber is a wave-guide because it directs the optical signal 

along its cylindrical axis.  As the signal propagates along the fiber’s axis its polarization 

state undergoes random rotations on the Poincare sphere because of the fiber’s structure.   

 

Modeling an optical fiber communication system 

An optical fiber communication system is a long-haul system covering thousands 

of kilometers.   To study the statistical properties of straight-line optical links, we 

 9



immediately face the problem that it is not easy to access/and or reproduce sufficiently 

long links (Vinegoni).  A natural and less expensive way to reproduce an optical fiber 

communication system is to design the recirculating loop model  (Vinegoni). Researchers 

use a physical experimental model, which we illustrate in figure 2, to facilitate the study 

of a communication system.  The loop is typically between 100 and 500km long.  

               
Transmitter Receiver

Figure 2
     Physical model:  The input signal is launched into the loop at the 
transmitter.  After going through the recirculating loop N times the 
output is measured at the receiver. 

PS

Amplifier 

 

 

 

 

 

 

 

The physical loop model attempts to capture the behavior of the straight-line 

system.   After going around the loop once, identical fiber is encountered on subsequent 

round trips of the loop.  This causes periodicity within the loop model that is not found in 

a straight-line system.  The polarization scrambler is a physical component placed within 

a recirculating loop that is not present in a straight-line system.  It is added in the model 

to reduce effects that are due to the periodicity of the loop (Sun).   It does so by 

performing a different random rotation of light each round trip of the loop. 
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Simulating the loop model 

A computer simulation of the loop model allows us to easily change the system 

parameters.  We study the system by simulating the evolution of the Stokes parameters.  

Recall that Stokes parameters reduce the description of an optical signal to four numbers.  

In contrast to this reduced model, a full model describes an optical signal in terms of 

pulses which are a function of time, position, and polarization state. 

 For the results in my thesis, the propagation of light through optical fiber, 

polarization scramblers and optical amplifiers is described using linear models.  The 

linear model of a system component is a four by four matrix that multiplies the input 

Stokes vector to that component.  The result is an output Stokes vector that models the 

polarization state of light just after the component.  

A three by three rotation matrix describes changes in the polarization state  

(S1, S2 , S3)  due to the optical fiber.  Any rotation matrix Rrot has the decomposition 

               Rrot = R x (ψ )R y (θ )R x (φ) . 

The angles ψ ,θ and φ  are called Euler angles.  This decomposition gives the rotation 

matrix Rrot an intuitive geometric interpretation.  Consider what happens when the 

polarization state (  is multiplied by RS1, S2 , S3) rot.  First, the vector (  is rotated 

about the x-axis by an angle 

S1, S2 , S3)

φ .   Next, the resulting vector is rotated by an angle θ  about 

the y-axis.  Finally, the resulting vector is rotated by an angle ψ  about the x-axis.  

Because S0 remains unchanged, our linear model for a signal propagating through optical 

fiber is 
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                  . 

 

MPS =

1 0 0 0
0
0
0

rot
    R

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 Recall that an optical fiber attenuates an optical signal propagating through it.   

Our rotation model has not accounted for this attenuation.  In a real fiber we have 

polarization independent loss meaning that where L is the length of 

the fiber and α is the loss coefficient.  When the signal goes through an amplifier the 

power is restored:  .  Since G is typical chosen so that , in 

our model we ignore power loss in the fiber and gain in the amplifier. 

S0
out, fiber = e−α LS0

in, fiber

S0
out, amplifier = GS0

in, amplifier G = eα L

 Amplifiers add polarization dependent loss (PDL) which means that the power 

loss depends on the input Stokes parameters: .  Notice that the 

input Stokes vector to the amplifier is determined by the rotation of the Stokes vector in 

the previous fiber or polarization scrambler.  We model PDL in the amplifier using the 

four by four matrix 

S0
out = f (S0

in , S1
in , S2

in , S3
in )

             MPDL =

1+ α 2

2
1− α 2

2
0 0

1− α 2

2
1+ α 2

2
0 0

0 0 α 0
0 0 0 α

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

.  

An optical signal that goes through an amplifier undergoes the linear transformation 

. The parameter, α, is the PDL per amplifier, which typically 

has the value 0.1dB.  For the PDL matrix  there is a unique polarization state 

 called the low-loss axis such that M

 S
out, amplifier = MPDLSin, amplifier

MPDL

(S1, S2 , S3) PDLS = S  where S = (1,  S1, S2 , S3) . When 
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a signal’s polarization state coincides with the low-loss axis it suffers the minimum 

possible power loss after going through the PDL element.  Our PDL matrix has a low-

loss axis of (1,  0,  0).  The high-loss axis of a PDL element is the polarization state of the 

signal that undergoes the largest possible loss of power in the PDL element.  In general 

the high-loss axis is antipodal to the low-loss axis on the Poincare sphere.  For example, 

our PDL matrix has a high-loss axis of (-1,  0,  0). 

 

Computing total PDL within the simulation model 

 In our simulation model we lump all the amplifiers in the loop and just consider a 

single amplifier with PDL matrix M .  Similarly, we lump all the fiber segments and 

the polarization scrambler in the loop, and just consider a single rotation matrix  

for the i

PDL

MPS(i)

th round trip of the loop (see figure 3).  Theoretical work by Huttner et al. 

(Huttner) explains why the polarization scramblers and amplifiers can be lumped.  The 

lumped model simplifies our computations.  If the light, circulates the same loop N times, 

the system can be described using the transfer matrix 

  
A = MPDLMPS(i)

i = 1

N

∏ .          (3)   

The four by four matrix, A, fully specifies the transfer function from input signal to 

output signal; i.e., . 
S0

out

Sout

⎡

⎣
⎢

⎤

⎦
⎥ = A

S0
in

Sin

⎡

⎣
⎢

⎤

⎦
⎥
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lumped lumped 

entry exit point

Figure 3 
  Simulation model:  The input, which is Sin, enters the system at the 
entry point.  After going through the recirculating loop N times the output, Sout, 
is measured at the exit point. 

 

 

 

 

 

 

 The total PDL, 
  

S0
out, max

S0
out, min , due to the system described by the matrix A can be 

computed from A as follows.  If we assume that the input Stokes vector has maximum 

power, S0 = 1, then output power from the system is given by   

 S0
out = A11 + Av

TSv                                                  (4)  

where  and Av = A12, A13, A14( ) Sv = S1
in , S2

in , S2
in( ).  Because the power is maximized 

by varying over all input polarization states, if we choose Sv = Av , then  

    S0
out,max = S0

out = A11 + Av
T Av = A11 + Av

2 .              (5)  

On the other hand, if we pick Sv = − Av  then  

 S0
out,min = S0

out = A11 −  Av
T Av = A11 − Av

2 .              (6)  

Therefore,   

total PDL = 
S0

out, max

S0
out, min =

A11 + Av
2

A
11

− Av
2 .                          (7)   

Notice that the total PDL is a random variable independent of the input polarization state.  
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The total PDL of the system is the maximum possible output power at the receiver 

divided by the minimum possible power optimized over all possible input polarization 

states at the transmitter.  Large PDL is bad for the system.  A large PDL indicates there is 

a polarization state for which the output power is very small.  Small output power results 

in a low signal to noise ratio (SNR).  Assuming, as is often the case, that the noise is 

unpolarized, the amount of noise is independent of the polarization state.  Consequently, 

a low SNR means that there is a high probability for bit errors to occur. 

 

A real polarization scrambler 

We saw that a PS is an essential component in a loop system.  To understand the 

behavior of a real PS we performed Monte Carlo experiments.  From our Monte Carlo 

experiments we were able to describe the pdf of the rotations performed by a real PS and 

to show that these rotations are not uniformly distributed. 

One of the simplest Monte Carlo experiments is a coin toss experiment.  In this 

experiment we toss a coin M times, collect the results in a histogram and observe the 

frequency of obtaining a head or a tail in order to determine the coin’s fairness.   In this 

way, a Monte Carlo (MC) experiment approximates the distribution of a random variable.  

When data from a MC experiment is organized in a histogram, it approximates the 

probability density function of the random variable.  As the number of samples, M, in the 

MC experiment increases the approximate pdf converges to the true pdf. 

Similar to the coin toss experiment, my colleague Hai Xu performed three Monte 

Carlo experiments using the polarization scrambler which changes the input polarization 

state of an optical signal. In the first, second and third experiments the input polarization 
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states were the standard basis vectors  respectively.  In the 

first experiment an input optical signal  is transmitted 

through a polarization scrambler element to obtain an output signal .  

Recall that the polarization scrambler has a negligible effect on the signal’s power which 

is set to 1 by default.  We repeat this procedure M times (each time is chosen 

randomly), observe the output polarization on the Poincare sphere and map the results 

from the sphere to a histogram.  The same experimental procedure is followed for the 

second and third experiments with input optical signals S  and 

 respectively. 

(1, 0, 0),  (0, 1, 0) and (0, 0, 1)

Sin, PS = (S0 , S1, S2 , S3) = (1,  1, 0, 0)

S out, PS = MPSSin, PS

MPS

in, PS = (1,  0, 1, 0)

Sin, PS = (1,  0, 0, 1)

Xu’s results are illustrated in figures 4a, 4b and 4c.  The histograms contain M = 

6250 samples which is large enough such that statistical error is not an issue.  Notice that 

in the figures the number of samples varies from about 50 to 100 indicating that there is a 

bias within the polarization scrambler regardless of the input polarization state.   

It was initially assumed that the polarization scrambler is ideal; that is it performs 

uniformly distributed rotations of the polarization state of a signal.  However, the three 

Monte Carlo experiments in figure 4 show that the polarization scrambler is not ideal.  In 

addition, the function by which the polarization scrambler rotates light is unknown.  

Therefore, in figure 4 we examined the distribution of rotations performed by the 

polarization scrambler.  Since it is difficult to visualize a distribution of rotation matrices, 

we instead choose the three input polarization states and performed MC experiments to 

understand the distribution function for a real polarization scrambler. 
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Figure 4a 
Distribution of output polarization 

states after going through a polarization 
scrambler with input polarization (1, 0, 0). 
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Figure 4a 
Distribution of output polarization 

states after going through a polarization 
scrambler with input polarization (0, 1, 0).  
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Figure 4c 
Distribution of output polarization 

states after going through a polarization 
scrambler with input polarization (0, 0, 1). 
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In order to represent a distribution of polarization states (  on a 1D 

histogram as in figures 4a, 4c and 4b we must define a mapping from the Poincare sphere 

to the 1D histogram.  In spherical coordinates the Poincare sphere can be fully specified 

in terms of two angles .  Hence, the spherical coordinate representation offers a 

transformation from the sphere onto a rectangle in the plane.  Consequently, a 

distribution of polarization states can be visualized using a two-dimensional histogram.  

We choose the spherical coordinate system so that 

S1, S2 , S3)

Θ and Φ

Θ=Θ0  is a circle of latitude and 

is a circle of longitude, where Φ=Φ0 0≤Θ≤π and 0≤Φ≤2π .  We can use circles of 

latitude Θ=Θj  for j = 1 to J( ) and longitude Φ= Φl  for l = 1 to L( ) to define a grid on 

the sphere, and we can choose the grid curves so that the areas of the grid boxes are all 

the same.  For each grid box Bjl let Hjl be the number of output polarization states that lie 

in this box.   

We can visualize the two dimensional histogram Hjl as a one-dimensional 

histogram.  The first J bins of the 1D histogram are obtained by going east around the J 

bins of the 2D histogram that are nearest to the North Pole.  The next J bins are obtained 

by going south one bin from each of the first J bins, and so on until we reach the South 

Pole.  Figure 6 illustrates these mappings from the Poincare sphere to a 2D histogram and 

from the 2D histogram to a 1D histogram. 
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Figure 5 

Illustrating the mapping from the Poincare sphere unto a 2D histogram and 
from the 2D histogram to a 1D histogram.  The sphere partitioned into 100 equal area 
segments. 

 

 

 

 

Modeling a real or biased polarization scrambler 

In our simulations of a loop system we consider a reasonable rotation model for a 

biased (real) polarization scrambler.  Recall that any rotation matrix Rrot has the 

decomposition  Rrot = R x (ψ )R y (θ)R x (φ) where ψ ,θ and φ  are Euler angles.   Therefore, to 

generate any rotation matrix we need to choose ψ , φ and θ  appropriately. 

 To model an ideal PS we choose the Euler angles ψ ,  θ  and φ  from a uniform 

distribution with pdfs 

fψ (x) =
1

2π
 if     0 ≤ x ≤ 2π  else 0,  
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fφ (x) =

1
2π

 if     0 ≤ x ≤ 2π  else 0, 

 
fcosθ (x) =

1
2

 if     -1 ≤ x ≤ 1 else 0 .   

Because ψ ,  φ  and cosθ are uniformly distributed, Rrot is uniformly distributed in the 

space of three by three rotation matrices.  For our biased PS model we choose ψ  and φ  

from uniform distributions as above but now we choose θ  from a biased distribution of 

cosθ  that is given by 

                          fβ (cosθ) =
β

1− e−2β e−β (1−cosθ )  for β  > 0     if cosθ ≤ 1,  else 0.     

   fβ (cosθ) =
1
2

 for β  = 0     if cosθ ≤ 1,  else 0.  

Here, β is the biasing parameter.  Note that as β → 0, fβ (cosθ) →
1
2

 for cosθ ≤ 1.   

Therefore, if  β  = 0  the biased model is equivalent to the unbiased model.  As β 

increases, the pdf is more skewed to the right.  In figure 4 we show the pdf of cosθ  with 

β = 0.6.   

 

Figure 6  

    The pdf fβ (cosθ ) with β  = 0.6.  
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Understanding the effects of a biased rotation model on signal propagation 

After performing Monte Carlo simulations (similar to those illustrated in figures 

4a, 4b and 4c) using our biased PS model we obtained distributions of the output 

polarization states as shown in figures 7a, 7b and 7c.  In figure 7a, we consider two cases 

both having an input polarization state, ( , which we show as the large light dot.  

On the left, the rotations are uniformly distributed (β

0, 0, 1)

 = 0), and we see that the output 

polarization states do indeed uniformly cover the Poincare sphere, as expected.  On the 

right, the rotations are sampled from a biased pdf with biasing parameter β = 10.  Notice 

that in this case the output polarization states are more heavily concentrated near (0, 0, 1) 

than near (0, 0, -1). 

We use the definition of Rrot in terms of Euler angles to understand the 

distribution patterns in figures 7a, 7b and 7c.  Let us consider the biased distribution in 

figure 7a.  There is no change when (1, 0, 0) is rotated about the x-axis by φ .  If we rotate 

the resulting vector, (1, 0, 0), about the y-axis by θ, it is on average close to (1, 0, 0) since 

when β is large θ  has a high probability of being near 0.  Rotating the resulting vector 

about the x-axis by an angle ψ  does not change its distance from (1, 0, 0).  Therefore, in 

figure 7a the points are more concentrated near (1, 0, 0).  Similar arguments can be used 

to understand figures 7b and 7c.  
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PS with β = 10  

Figure 7a 
Distribution of polarization states:  For the distributions on the 

left and right, the input polarization state (1, 0, 0) is the large light dot.  
After going through a PS the output polarization states, dark dots, are 
plotted on the Poincare sphere.  This is done for 1000 samples.  For each 
sample the input polarization state is always (1, 0, 0).  

PS with 
β  0

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7b 
Distribution of polarization states:  For the distributions on the 

left and right, the input polarization state (0, 1, 0) is the large light dot.  
After going through a PS the output polarization states, dark dots, are 
plotted on the Poincare sphere.  This is done for 1000 samples.  For 
each sample the input polarization state is always (0, 1, 0).  

PS with β = 10  PS with β = 0  
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PS with β = 10  PS with 
β  0

Figure 7c 
Distribution of polarization states:  For the distributions on the 

left and right, the input polarization state (0, 0, 1) is the large light dot.  
After going through a PS the output polarization states, dark dots, are 
plotted on the Poincare sphere.  This is done for 1000 samples.  For 
each sample the input polarization state is always (0, 0, 1). 

 

 

 

 

 

 

 

 

 

Xu’s experimental data of a real polarization scrambler suggests that our biasing 

parameter should be a lot smaller than β = 10.  Recall that in the experimental data (figure 

4) samples generally vary between 50 to 100 elements which is by a factor of 2.  For a 

biasing parameter β = 0.6 samples vary between 6000 to 16000 which is by a factor of 2.7 

(see figure 8).  Since this is comparable to a factor of 2 we deduce that β = 0.6  is a 

reasonable biasing parameter.  Note that we are not attempting to match the shape of the 

histogram just the overall variability factor. 

For a biasing parameter, β = 0.6, the biasing effects are very subtle on the sphere 

but more revealing on the histogram.  By observing the front and back of the sphere in 

figure 8, we see that the points are more sparse on the back relative to the front.  

However, if we consider front and back separately, then both appear uniformly to be 

distributed.   
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Figure 8 
A distribution of output polarization states is seen on the left for a PS with 

β = 0.6.  On the right is its 1D representation. 

 

 

Computer simulation of the entire system 

 We use MATLAB 7.0 to simulate our reduced model of an optical signal 

propagating through an optical fiber communication system.  We simulate the system two 

different ways, which we refer to as the static case and the abrupt case.  Recall that we 

used a lumped simulation model for simplicity.  In addition, MPS incorporates rotations 

done by both the fiber and the polarization scrambler. 

 The rotation matrix Rrot of real fiber changes over the course of time due to 

environmental factors such as temperature changes and mechanical vibrations.  In fact  

 Rrot = R x (ψ )R y (θ)R x (φ)  is  

      .

 Rrot =
cos(θ) sin(θ)cos(ψ) −sin(θ)sin(ψ)

−sin(θ)cos(φ) cos(θ)cos(φ)cos(ψ) − sin(φ)sin(ψ) −cos(θ)cos(φ)sin(ψ) − sin(φ)cos(ψ)

−sin(θ)sin(φ) cos(θ)sin(φ)cos(ψ) + cos(φ)sin(ψ) −cos(θ)sin(φ)sin(ψ) + cos(φ)cos(ψ)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 24



The time required for Rrot  to change is longer than the time for light to propagate many 

times through the loop, i.e. it is longer than the time required to make a single 

measurement of the total PDL.  We consider two different extremes for the time it takes 

for the rotation matrix of the fiber to change.  At one extreme is the static case in which 

the fiber rotation Rrot   does not change during the time that the M measurements of the 

total PDL are made.  In this case, the transfer matrix for the mA(m) th total PDL sample is  

 
A(m) = MPDLMPS(m, i)

i=1

N

∏ ,             (8)

 

where  is the four by four matrix that models the random rotation of the 

polarization scrambler in the i

MPS(m, i)

th round trip of the loop for  the mth total PDL sample.  A 

different random rotation matrix is chosen for each round trip and for each 

PDL sample.  Here we are assuming that the fiber rotation R

MPS(m, i)

rot = I, the identity matrix.  At 

the other extreme is the abrupt case in which the fiber rotation changes randomly from 

one measurement of the total PDL to the next.  In this case, the transfer matrix for 

the m

A(m)

th total PDL sample is modeled by 

 
A(m) = MPDLMFIBER (m)MPS(m, i)

i=1

N

∏ ,            (9)

 

where  is just as in the static case and M is a 4x4 matrix that models the 

rotation due to the fiber in the loop for the m

MPS(m, i) FIBER (m)

th total PDL sample.  In the abrupt case 

instead of changing the fiber rotation from sample to sample, we can instead think of the 
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fiber rotation as being fixed and regard the high and low loss PDL axes as changing 

randomly from one sample to the next. 

 

Galtarossa’s Formula 

Galtarossa et al. derived an analytical formula for the pdf  of total PDL x 

for a static loop system with an unbiased polarization scrambler.  The formula states that 

fx (x, t)

                          

 

fx (x, t) =
2x2e−x2 / 2γ 2t sinh(x / γ )e-t / 2

γ 3 2πt3x / γ
,              (11a)  

where x is the total PDL and γ =
20

loge 10
.  The variable t is a free parameter in their 

theory that is related to the mean total PDL by                         

                          < x > = γ
2t
π

e− t /2 + 1+ t( )erf
t
2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.                      (11b)  

We determine a value for t by calculating an estimate of the mean total PDL <x> from a 

MC experiment and using a numerical root finding algorithm to solve for t in equation 

(11b).  Although Galtarossa’s formula was derived for a static loop system with an 

unbiased PS we also use it to find an analytical curve for a static loop system with a 

biased PS.  

 
 
 
 
Results: PDFs and System Statistics  
 

We want to determine the degree to which a biased PS affects the pdf of the total 

PDL and hence the pdf of the BER.  In equation (7) we saw the dependence of total PDL 
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on the system transfer matrix.  In equations (8), (9) and (10) we saw that total PDL also 

depends on the case under study (static case or abrupt case), the current sample m, the 

number of PDL elements N, and the biasing parameter β .  

To understand the dependence of the total PDL on the parameters N and β we 

perform Monte Carlo experiments to obtain the pdf of total PDL in both the static and 

abrupt cases.  Our experiments belong to two groups.  For the first group we compute 

total PDL after traversing the loop 15 times (system has N = 15 PDL elements) while for 

the second group we traverse the loop 100 times (system has N = 100 PDL elements).  In 

each group we chose 7 different values for the biasing parameter: 

β = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.  For each Monte Carlo experiment within a group we 

choose M = 1,000,000 samples, and we set the PDL per amplifier to be x_PDL = 0.1dB 

which corresponds to α = 0.9886 . 

 

Static Case 

Figure 9 shows the pdfs for the group containing 15 PDL elements while figure 

10 shows the pdfs for the group containing 100 PDL elements.   For each of the plots in 

either group the darker solid curve is the pdf for a loop system with a bias and the lighter 

solid curve is the pdf for a loop system with an unbiased PS.  Both curves are obtain from 

MC experiments.  The darker and lighter dashed curves are analytical fits for the biased 

and unbiased curves respectively.  These curves are plotted on a semilog scale.  The 

horizontal axis is total PDL measured in dB and the vertical axis, which is on the left, is 

probability density.  An area under the pdf curves  is the probability that 

.  Notice that the tails of our Monte Carlo curves lack smoothness.  

fx  dx
a

b

∫

 a ≤ total PDL ≤ b
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This is because large total PDL values have lower probabilities.  Large total PDL values 

are very rare because they only occur when the rotations are such that the signal is 

repeatedly closely aligned with the low loss axes or the high loss axes.  Consequently, 

there are very few samples that fall into the large total PDL bins, and so the statistical 

resolution is poor. 

In figures 9, 10, 11, and 12, the thin solid curve at the bottom of the graph is the 

coefficient of variation curve shown using the linear scale on the right vertical axis.  

Recall that the pdfs computed from the MC experiments are approximations of the true 

pdfs.  The coefficient of variation function tells us by how much the approximate pdf 

differs from the true pdf for a given total PDL value.  In our pdfs (histograms) the 

number of hits in a bin is a random variable, which has a mean and a standard deviation.  

The probability density values we plot are estimates  μ  for the mean μ  in each bin while 

 σ  is the variance.  By the central limit theorem μ  approaches a gaussian distribution as 

M → ∞.   However, these values are not always accurate.  To access the accuracy of our 

pdfs at any point we would like to determine the probability that  μ  ∈  %μ − %σ ,  %μ + %σ[ ].  

This is equivalent to the probability that 
 

μ
%μ

 ∈  1−
%σ
%μ

,  1+
%σ
%μ

⎡

⎣
⎢

⎤

⎦
⎥ .  If  σ  is small 

 

σ
%μ

 is also 

small which implies that the probability that  μ  ∈  %μ − %σ ,  %μ + %σ[ ] is large since μ  has a 

gaussian distribution.  The coefficient of variation function is 
 
g(x) =

%σ
%μ

=
1 − %μ

%μ M − 1
.  

We computed the coefficient of variation function based on the fact that the number of 

hits in a bin is a binomial random variable.  Here, x is the total PDL, M is the number of 

samples and  μ  is the fraction of hits within the bin containing x.   If for some total PDL 
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value the coefficient of variation is zero, then at that total PDL value the approximate pdf 

and the true pdf are equal.  As the coefficient of variation increases the approximate pdf 

deviates more and more from the true pdf as is the case in the tails.  A small coefficient of 

variation means that the difference we see between the biased and unbiased pdf is real 

and not due to statistical error.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 29



Figure 9 

The probability density function of the total PDL in the static case.  The number 

of PDL elements is N = 15. The biasing parameter increases from 0.1 to 0.6. 
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Figure 10 

The pdf of the total PDL in the static case.  The number of PDL elements is N = 

100.  The biasing parameter increases from 0.1 to 0.6.  
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Also notice that for 100 PDL elements the analytical curves agree very well with 

the curves from the Monte Carlo experiment.  However, for 15 PDL elements they do not 

agree in the tails.  This is because Galtarossa’s formula works in the continuum limit, i.e 

in the limit that the number of PDL elements approaches infinity, N → ∞.  

We saw in figure 7a that when the biasing parameter β is large and the input 

polarization state of the signal is close to the low-loss axis (1, 0, 0) of the PDL, the output 

signal also tends to be close to the low loss axis.  Similarly, if the input signal is close to 

the high loss axis (-1, 0, 0) it will tend to stay close to the high loss axis when the biasing 

parameter is large.  Therefore, in the biased static case as the loop is circulated many 

times, an input signal close to the low-loss axis will tend to remain near the low-loss axis 

and therefore tend to have a small total loss of power at the receiver, whereas an input 

signal that is close to the high loss axes will tend to remain near the high loss axis and 

therefore tend to have a large total loss of power at the receiver.  Consequently, in the 

static case the total PDL will tend to be larger in the biased case than in the unbiased 

case, and the stronger the bias the large the total PDL will tend to be.  This explains why 

when the total PDL is large, the biased curve lies above the unbiased curve, i.e why the 

probability of a large total PDL value is greater for the biased case than for the unbiased 

case.   

The first and second columns in Tables 1 and 2 illustrate changes in the mean 

total PDL as a function of the biasing parameter for the static case.  Table 1 shows the 

static case with 15 PDL elements while Table 2 shows the static case with 100 PDL 

elements.  Notice that as the biasing parameter increases so does the mean of total PDL 

value.  Also notice that a loop system with 15 PDL elements has a smaller mean than a 
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loop system with 100 PDL elements indicating that as the number of PDL elements 

increases the total PDL increases. 

Table 1 
 

Dependence of the mean and outage probability on the biasing parameter for 15 
PDL elements for the static case  

 
Biasing 

Parameter 
Mean 0.8 dB 

Outage 
Probability 

0 0.3579 0.0053 

0.1000 0.3696 0.0076 

0.2000 0.3818 0.0107 

0.3000 0.3933 0.0145 

0.4000 0.4062 0.0196 

0.5000 0.4187 0.0256 

0.6000 0.4316 0.0328 

 

 

 

 

 

 

 

 

 
Table 2 
 

Dependence of the mean and outage probability on the biasing parameter for 100 
PDL elements for the static case 

 
Biasing 

Parameter 
Mean 2 dB Outage 

Probability 
0 0.9225 0.0075 

0.1000 0.9536 0.0107 

0.2000 0.9852 0.0148 

0.3000 1.0194 0.0203 

0.4000 1.0527 0.0268 

0.5000 1.0871 0.0348 

0.6000 1.1233 0.0445 
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The first and third columns of Tables 1 and 2 show the dependence of the 0.8 dB 

and 2 dB outage probabilities on the biasing parameter.  The 0.8 dB outage probability is 

the probability that total PDL exceeds 0.8 dB for a loop system containing 15 PDL 

elements.  The 2 dB outage probability is the probability that total PDL exceeds 2 dB for 

a loop system containing 100 PDL elements.  The outage probability can be used by 

system designers.  A major goal in the design of optical fiber transmission systems is to 

minimize outage probability (Lima).  A system designer may say for instance that the 2 

dB outage probability of a system should not exceed 10 .  This means that the 

probability that the total PDL is greater than 2 dB should be less than10 .  In Tables 1 

and 2 notice that the outage probability increases with increasing biasing parameter.   

This is because with strong biasing the probability of getting larger total PDL values is 

greater.  We have just observed changes in the pdf of total PDL as a function of the 

biasing parameter.  However, the pdf with 

−6

−6

β = 0.6  is very important because it best 

reflects a real PS. 

Abrupt case 

Figure 11 illustrates pdfs in the abrupt case for the group containing 15 PDL 

elements while figure 12 shows pdfs for the group containing 100 PDL elements.  For 

each of the plots in either group the darker solid curve is the pdf for a loop system with a 

bias and the lighter solid curve is the pdf for a loop system with an unbiased PS.  Both 

curves are obtained from MC experiments.  These curves are plotted on a semi-log scale.  

The horizontal axis is total PDL measured in dB and the vertical axis, which is on the left, 

is probability.  We have not shown analytical curves for the abrupt case because 

Galtarossa’s formula is not a good analytical fit.  In future work we will describe another 
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approach for obtaining an analytical fit. 

 

Figure 11 

The probability density function of the total PDL in the abrupt case.  The number 

of PDL elements is N = 15. The biasing parameter increases from 0.1 to 0.6. 
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Figure 12 

The probability density function of the total PDL in the abrupt case.  The number 

of PDL elements is N = 100. The biasing parameter increases from 0.1 to 0.6. 
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The first and second columns in Tables 3 and 4 illustrate changes in the mean as a 

function of the biasing parameter for the abrupt case.  Table 3 shows the abrupt case with 

15 PDL elements while Table 4 shows the abrupt case with 100 PDL.  Notice that for the 

abrupt case the mean and outage probability also increase as the biasing parameter 

increases.  

Table 3 
 

Dependence of the mean and outage probability on the biasing parameter for 15 
PDL elements for the abrupt case 
 
 
 Biasing 

Parameter 
Mean 0.8 dB 

Outage 
Probability 

0 0.3582 0.0053 

0.1000 0.3582 0.0053 

0.2000 0.3583 0.0053 

0.3000 0.3585 0.0054 

0.4000 0.3592 
 

 

 

 
 
 
 
 
 
 0.0055  
 0.5000 0.3593 0.0055  
 

0.6000 0.3602 0.0057  
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Table 4 
 

Dependence of the mean and outage probability on the biasing parameter for 100 
PDL elements for the abrupt case 

 
 
 Biasing 

Parameter 
Mean 2 dB Outage 

Probability  
 

0 0.9224 0.0075  
 

0.1000 0.9225 0.0075  
 

0.2000 0.9231 0.0075  
 

0.3000 0.9240 0.0076  
 

0.4000 0.9248 0.0077  
 

0.5000 0.9265 0.0079  
 

0.6000 0.9280 0.0080  
 
 
 
 The maximum possible total PDL value in either the abrupt or static case is given 

by .  Recall that X _ PDL * NUM _ PDL X _ PDL = 0.1 dB  is the PDL per amplifier and 

NUM _ PDL  is the number of PDL elements in a fiber realization.  Therefore, a fiber 

realization containing 15 PDL elements has a maximum total PDL = 1.5 dB while a fiber 

realization containing 100 PDL elements has a maximum total PDL  = 10 dB.  However, 

our pdfs in figure 10 (static case) have 100 PDL elements and a maximum total PDL 

value of 4 dB.  Similarly, our pdfs in figure 12 (abrupt case) have 100 PDL elements and 

a maximum total PDL value of 3.5 dB.  This is because the probability of getting a total 

PDL value greater than 3 dB is extremely small and we have not performed enough 

Monte Carlo simulations to obtain any samples with total PDL values in excess of 4 dB. 
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The main difference between the static and abrupt cases is that the low and high-

loss axes change randomly in the abrupt case per fiber realization while they are fixed for 

all fiber realizations in the static case. But notice that in the abrupt case the mean values 

are smaller than those in the static case for a corresponding biasing parameter.  The 

biasing matters much more in the static case.  As the biasing parameter increases from 

0.1 to 0.6, the 2 dB outage probability varies from 0.0075 to 0.0445 in the static case 

while it varies from 0.0075 to 0.0080 in the abrupt case.  We expect the behavior of a PS 

in a real loop system to be intermediate between the static and abrupt cases and probably 

closer to the abrupt case. 

  

Conclusions 

 In this work we suggested a model for a non-ideal polarization scrambler and 

used Monte Carlo experiments to determine the effect of our biased PS on the pdf of total 

PDL for a communication system.  From experimental data we saw that a biased loop 

system with a biasing parameter of 0.6 is comparable to a real PS.  By simulating 

different loop systems with different biasing strengths we also saw that total PDL 

increases with increasing biasing strength and the mean PDL is greater in the static case.   

Recall that the biasing function of a real PS is unknown.  A question that remains 

unanswered is how an arbitrary bias in the PS affects the system pdf.  Recall that the 

ultimate goal of simulating a straight-line system is to specify system parameters for the 

design of an actual communications system.  My thesis is step toward this goal because it 

examines pdfs that describe the overall behavior of the system.  
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