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Abstract: We compute the probability density function of ∆Q, the reduction of the Q-factor
due to polarization effects, and hence the outage probability as a function of the allowed margin
in WDM systems. We use a reduced Stokes parameter model and importance sampling.
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A fundamental problem in the design of optical communication systems is to minimize channel outages due
to the polarization effects. System designers commonly allocate a prescribed margin to polarization effects,
such as 2 dB, with a certain probability that the margin will be exceeded, such as 10−6. When this margin
is exceeded an outage is said to occur. Because outages are so rare, it has been difficult to obtain them from
experiments or from standard Monte Carlo simulations.

There are three polarization effects that lead to impairments in long-haul optical fiber transmission systems:
polarization-mode dispersion (PMD), polarization-dependent loss (PDL), and polarization-dependent gain
(PDG) [1, 2]. Since PMD, PDL, and PDG are slow time effects, it is reasonable to assume that they can be
separated from the fast effects of nonlinearity and chromatic dispersion [3]. Wang and Menyuk validated this
assumption and proposed the reduced Stokes model as a tool for the computation of the penalty induced by
the polarization effects in long-haul transmission systems [4]. The reduced model only follows the evolution
of the Stokes parameters and the average power of the signal and of the noise in each channel due to the
combined effects of PMD, PDL, PDG, amplifier spontaneous emission noise, and the gain saturation of
optical amplifiers. Thus, the reduced model applies when the PMD is not so large that it distorts the pulses
within a single channel. We calculate the Q-factor from the signal-to-noise ratio [5] using a single fiber
realization at a fixed level of PMD when PDL and PDG are present and when they are absent. From that,
we may determine ∆Q (in dB) due to these effects. We note that only ∆Q is meaningful since the Q-factor
does not contain the effects of chromatic dispersion and nonlinearity. We define the outage probability as
the probability that ∆Q exceeds an allowed margin.

The reduced model decreases the computational time of simulations of the polarization effects by orders
of magnitude when compared to full time domain simulations. Even so, until now efficient computation
of outage probabilities as small as 10−6 has only been carried out using numerical extrapolation with a
Gaussian function [4] to estimate the tails of the probability density function (pdf) of ∆Q obtained using
Monte Carlo techniques in combination with reduced model simulations. In this contribution, we apply the
technique of importance sampling [6] to resolve the tails of the pdf of ∆Q and thereby obtain a more accurate
computation of the outage probability due to PMD and PDL. In addition, we have been able to determine
the accuracy of the Gaussian extrapolation of the pdf of ∆Q. Importance sampling has been recently applied
to the study of PMD emulators [7] and intra-channel PMD-induced distortions [8, 9] in optical transmission
systems.

To apply importance sampling, we first recall that PI , the probability of an event defined by the indicator
function I(x), may be written as

PI =
1

N

N∑

i=1

I(xi)L(xi), (1)

where L(x) = p(x)/p∗(x) is the likelihood ratio, and p(x) and p∗(x) are the unbiased and biased density
functions of the random vector x. The key difficulty in applying importance sampling is to properly choose
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p∗(x). For a given channel, we have found that in order to bias towards large ∆Q values, the appropriate
parameters to bias are the angles θn between the polarization state of the channel and the polarization state
that undergoes the highest loss due to PDL in the n-th optical amplifier. The optical amplifiers are the main
source of PDL in optical transmission systems. By biasing cos θn towards one, we increase the likelihood that
the ∆Q of the channel will be large. The angles θn are directly determined by the realization of the random
mode coupling of the last birefringent section of the fiber that precedes the optical amplifiers. Thus, the
values of cos θn play the role of the components of the random vector x in Eq. (1). The indicator function
I in Eq. (1) is chosen to compute the probability of having the value of ∆Q within a given range, such as
a bin in a histogram. Thus, I is defined to be 1 inside the desired ∆Q range and 0 otherwise. Specifically,
we select cos θn using the same pdf used in [9]: f (cos θn) = (α/2) [(cos θn + 1) /2]

α−1
, which corresponds

to the unbiased case when α = 1. With this pdf the likelihood ratio for each biased angle is given by
L (cos θn) = α−1 [(cos θn + 1) /2]

1−α
. Since the unbiased cos θn are independent, the likelihood ratio of each

realization of the system is equal to the product of the likelihood ratios of each biased angle. By varying α
we can statistically resolve the pdf of the Q-factor in any desired range.
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Fig. 1. Validation of the reduced Stokes model. (a) Mean of ∆Q in dB as a function of the PDL for each
optical amplifier. (b) Standard deviation of ∆Q. The dotted lines are results of full model simulations with
20 samples of fiber realizations. The dashed lines are results of reduced model simulations with 20 samples.
The solid lines are results of reduced model simulations with 1000 samples. The curves for the full model
and the reduced model with 20 samples lie on top of each other in (a). The curves for the reduced model
with 20 samples and with 1000 samples lie on top of each other in (b).

In order to compute outage probabilities using the reduced model we must first validate our implementation
of the reduced model by comparison to a full time and frequency domain model using the Manakov-PMD
equation [10]. We note that the importance sampling technique proposed here can also be applied to the
full model. Figures 1.a and 1.b show numerical results of the mean of ∆Q in dB and its standard deviation,
respectively, as a function of the PDL for each optical amplifier for the full and the reduced models. These
results are for a trans-oceanic wavelength-division multiplexed (WDM) system with eight 10 Gbit/s return-
to-zero channels spaced 1 nm apart. The total propagation distance is 8, 910 km, with an amplifier spacing
of 33 km, and 0.1 ps/km1/2 of PMD. There is no PDG in this example. For the full model the nonlinear
coefficient n2 is 2.6 × 10−20 m2/W and the effective area is 80 µm2. The periodic dispersion map consists
of one section of dispersion shifted fiber whose dispersion is −2 ps/nm-km at 1550 nm and whose length
is 264 km, followed by a section of single mode fiber whose dispersion is 16 ps/nm-km and whose length is
33 km. In both sections the dispersion slope is equal to 0.07 ps/nm2-km. The residual dispersion in each
of the channels whose central wavelength is not equal to the zero-dispersion wavelength is compensated for
using symmetric pre- and post-dispersion compensation. Since the full simulations require a large amount
of computer time, we are only comparing the mean and the standard deviation of ∆Q, and we only use
twenty random system realizations with the same PMD. To compare the two models we use the same twenty
samples in the reduced model simulation to avoid the statistical uncertainty in the computation of the mean
and the standard deviation of ∆Q, and these same fiber realizations were used for the different PDL values.
The agreement between the two models is very good. When we increase the number of realizations in the
reduced model to 1000, the agreement is still very good.

We now apply importance sampling to resolve the tails of the pdf of ∆Q, in order to compute outage
probabilities. Figures 2.a and 2.b show, respectively, the pdf of ∆Q and the outage probability versus the
allowed ∆Q margin with PDL equal to 0.13 dB and 0.2 dB in each optical amplifier. The outage probability
at a given ∆Q is the complement of the cumulative density function. To validate the importance sampling
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Fig. 2. (a) The pdf of ∆Q and (b) the outage probability with different values of PDL. The solid lines are
results for PDL = 0.13 dB, and the dot-dashed lines are their Gaussian fit. The dashed lines are results for
PDL= 0.20 dB, the dotted lines are their Gaussian fit, and the filled circles are results from standard Monte
Carlo simulations with 2.6× 106 samples. The horizontal line in (b) is the 10−6 outage probability level.

algorithm we compared it to standard Monte Carlo simulations. When the PDL is 0.2 dB, the agreement
in Fig. 2.a between the importance sampling method (dashed lines) and the standard Monte Carlo method
(filled circles) is excellent. In Figures 2.a and 2.b we observe that the actual pdf of ∆Q substantially deviates
in the tail from the Gaussian pdf with the same mean and standard deviation for large values of ∆Q margin,
such as 2 dB and 3 dB. In these cases, the Gaussian extrapolation of the pdf of ∆Q overestimates the margin
at outage probability of 10−6 by up to 0.6 dB. In Fig. 3 we show that the deviation between the ∆Q margins
of the true pdf and the Gaussian fit increases as the PDL increases. The Monte Carlo simulations using
importance sampling were carried out with only 3 × 104 samples, which is a tiny fraction of the number of
samples necessary to obtain an equivalent statistical resolution using standard Monte Carlo simulations.
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Fig. 3. The ∆Q margin with outage probability of 10−6 due to PMD and PDL as a function of the PDL.
The solid line are results from Monte Carlo simulations with importance sampling and the dashed line are
results obtained using the Gaussian fit of the pdf of ∆Q.

In conclusion, we have demonstrated that it is possible to use importance sampling to accurately calculate
outage probabilities on the order of 10−6 due to the combination of PMD and PDL. We also show that the
tails of the pdf of ∆Q can deviate substantially from those of a Gaussian pdf. Hence, the use of Gaussian ex-
trapolation of the pdf of ∆Q can overestimate the outage probability due to PMD and PDL. The application
of the importance sampling to this problem when the PDG is included is currently under investigation.
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