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Abstract. Quartz enhanced photoacoustic spectroscopy (QEPAS) is a technique for detecting
trace gases which relies on a quartz tuning fork resonator to amplify and measure the weak acoustic
pressure waves that are generated when a laser heat source periodically interacts with a gas sample.
At low ambient pressures, the same tuning fork can instead detect thermal diffusion waves generated
by this laser-gas interaction, in a process called resonant optothermoacoustic detection (ROTADE).
In this paper, we present a unified computational model for QEPAS and ROTADE sensors that is
based on a coupled system of Helmholtz equations for pressure and temperature in a fluid domain
surrounding the tuning fork. In the tuning fork itself the standard heat equation is used to solve for
temperature. We employ the perfectly matched layer (PML) approach to absorb outgoing waves and
prevent reflections off of the boundary of the computational domain. The resulting linear system
is highly ill-conditioned, but Krylov subspace solvers can be used to solve the system effectively if
one employs an appropriate parallel block preconditioner. This method reduces the problem to that
of solving a scalar Helmholtz problem with PML, which we precondition by coupling an algebraic
multigrid solver in the interior of the computational domain to a direct solver in the PML region.
Numerical results indicate that the preconditioner for the scalar Helmholtz problem with PML is both
scalable and mesh-independent. Simulations show that the coupled pressure-temperature waves can
strongly differ from the solution to the acoustic wave equation at low ambient pressures. In particular,
interactions between the pressure and temperature solutions of the coupled system contribute to the
reduced sensitivity of ROTADE sensors which has been experimentally observed in certain parameter
regimes.
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1. Introduction. Laser absorption spectroscopy is a technique for detecting and
measuring minute amounts of gases such as methane, carbon dioxide, and ethane.
Trace gas sensing applications range from urban air quality monitoring to disease
diagnosis via breath analysis to industrial process control [17, 46, 47]. One of the most
robust and sensitive optical detection techniques for trace gas sensing is photoacoustic
spectroscopy (PAS), which offers a cost-effective, compact and versatile alternative
to more traditional sensing methods [46]. A particular variant of PAS is quartz
enhanced photoacoustic spectroscopy (QEPAS), which employs a quartz tuning fork
(QTF) as an alternative to the traditional spectrophone [17, 32]. (See Figure 1.1(a)
for a photograph of a QTF). Due to the small damping and the narrow bandwidth
of the resonances of the QTF, QEPAS sensors are nearly immune to background
noise and can detect gas concentrations in the parts per million to parts per billion
range [19, 35, 55].

QEPAS sensors employ a modulated single-wavelength laser source to irradiate a
gas sample, with the laser wavelength chosen to match an absorption line of a par-
ticular chemical species to be detected [40]. When the laser radiation is absorbed by
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(a)
(b) (c)

Fig. 1.1. (a) Photograph of a quartz tuning fork with the size shown relative to a human finger
(photo courtesy of A. Kosterev). Visualization of the experimental setup of (b) a QEPAS sensor
and (c) a ROTADE sensor. The two schematic diagrams show the tuning fork (blue), laser source
(pink), and electrode wires (black). For the ROTADE model, the laser beam is focused through a
lens (dark blue).

the trace gas, the gas molecules release their excess vibrational energy as heat. Be-
cause the interaction between the laser and the trace gas is modulated at a prescribed
frequency, the transport of vibrational energy is in the form of a thermal diffusion
wave. In addition, vibrational-to-translational (V-T) energy conversion processes in
the gas generate an acoustic pressure wave. Both the thermal and the acoustic waves
induce a measurable response from the tuning fork, an effect that can be significantly
enhanced if the modulation frequency of the laser source is chosen to excite a resonant
vibration in the tuning fork. At the surface of the QTF the thermal wave dissipates
into the interior of the tuning fork and induces a mechanical stress in the form of a
deformation of its tines. Since quartz is a piezoelectric material [45], the vibration of
the tines generates a current that can be measured on electrodes attached to the sides
of the tuning fork [33, 45]. In addition, the acoustic pressure wave imparts a periodic
forcing on the surface of the tuning fork that also induces a mechanical vibration
of the QTF. This mechanical vibration then generates an additional electrical signal
through the same piezoelectric effect. Thus, the QTF detects vibrations induced by
both the pressure and the temperature waves, with the amplitude of the measured
electric signal being proportional to the concentration of the trace gas [27, 34].

Although in theory the acoustic and thermal waves can both contribute to the
measured signal, in practice the systems are usually designed so that only one of these
phenomena dominates. When the acoustic wave is the dominant component of the
signal, the system is referred to as a QEPAS sensor [32, 35], and when the thermal
wave dominates the system is referred to as a resonant optothermoacoustic detection
(ROTADE) sensor [33]. However, experiments have also been performed in which
both the thermal and acoustic signals are significant [33, 49]. The primary factors
dictating whether the QEPAS or ROTADE phenomena dominates are the position
of the laser and the ambient pressure. QEPAS sensors typically operate in ambient
pressure regimes ranging from 50 Torr (≈ 1/15 atm) to 1 atm [19, 46], with the laser
focused near the top of the QTF (see Figure 1.1(b)) [17]. Below 50 Torr, the rate
of V-T relaxation becomes less significant and whether the acoustic or thermal wave
dominates depends upon the position of the laser beam [33]. When the laser is focused
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near the bottom of the tines (see Figure 1.1(c)) the system acts as a ROTADE sensor.
Accurate mathematical models of QEPAS and ROTADE sensors are essential for

optimizing their performance. Previous work by Petra et al. [49] employed a simplified
computational model of a ROTADE sensor to numerically optimize the geometry of
a QTF. Firebaugh et al. [23] developed a numerical model of a QEPAS sensor with a
microresonator to predict the optimal dimensions of the microresonator tube. They
later studied how sensor performance was affected by variations in QTF geometry [24].
A significant deficiency of these studies is the use of ad-hoc damping models for the
QTF derived from experimental data. For instance, Petra et al. [48, 49] relied on
an experimentally measured quality factor to determine a damping coefficient in a
model for the thermoelastic deformation of the QTF. To model damping accurately,
viscous damping due to the motion of the QTF through the fluid (the main source of
damping) must be included [4, 24, 44].

This paper is a major advance towards the development of a joint mathematical
model that accurately incorporates viscous damping and thermal conduction effects
for both QEPAS and ROTADE sensors. We present a computational model that
describes the behavior of the acoustic and thermal waves due to a laser source in the
presence of a QTF. Our model relies upon a coupled pressure-temperature system of
Helmholtz equations derived by Morse and Ingard [42], which represents a generaliza-
tion of the standard heat and acoustic wave equations and includes viscous damping
and thermal conduction effects. A motivation for studying the coupled system is to
analyze the nature of the interaction between the acoustic and thermal waves, which
has been shown to be non-trivial in certain cases [33, 49].

This work builds on a recent publication by Kaderli et al. [30], in which we derived
an analytic solution to the pressure-temperature equations in an infinitely long cylin-
drical tube of air surrounded by a solid annulus. The solution demonstrated that in
certain parameter regimes there is a significant difference between the solution of the
coupled pressure-temperature system and the solution of the classical heat equation.
To facilitate the study of these physical effects, we develop a parallel preconditioned
iterative scheme to solve the linear problem obtained from the finite element dis-
cretization of the pressure-temperature system. Brennan and Kirby [9, 10] studied
related preconditioning schemes for the coupled pressure-temperature equations in
the absence of a QTF on a rectangular domain with Dirichlet boundary conditions.

Our numerical results demonstrate the ability of our method to model both
QEPAS and ROTADE sensors. In particular, we show that at low ambient pressures,
the pressure solution to the coupled system behaves very differently from the solution
of the classical wave equation. Our numerical results also provide an explanation for a
discrepancy between the experimentally measured and numerically computed signals
observed in Petra et al [48], which highlights the importance of realistic modeling of
the interface between the air and the tuning fork domains. Our final simulation study
suggests that an interaction between the pressure and temperature solutions of the
coupled system contributes to the reduction in the sensitivity of ROTADE sensors
that was experimentally observed by Kosterev and Doty [33] in certain parameter
regimes.

We implement the perfectly matched layer (PML) method [8] to absorb the outgo-
ing pressure and temperature waves at the boundaries of the computational domain.
A considerable amount of research has been dedicated toward developing efficient tech-
niques for solving Helmholtz problems with PML. Erlangga [21] implemented a Krylov
subspace solver preconditioned by a geometric multigrid F-cycle with a complex shift
in the Laplacian operator. Approaches based on sweeping preconditioners have been
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studied in [20, 50]. In addition, a nested dissection method coupled with Dirichlet-
to-Neumann maps has been investigated in [38], with nearly O(n)-complexity for 2D
problems. Finally, a survey of recent work based on the multifrontal method can be
found in [54, 56].

In this paper we introduce a novel approach for preconditioning indefinite scalar
Helmholtz problems with PML, based on partitioning the domain into subregions
with and without PML. In the non-PML region, we compute an approximate solution
by solving the scalar Helmholtz problem with homogeneous Robin boundary condi-
tions, which can then be used as boundary data for the PML region. A particular
advantage of our approach over the methods in [20, 38, 50] is the ability to deal with
unstructured, adaptively refined meshes that are graph partitioned for parallel com-
putations. Our numerical scheme also benefits from the use of the algebraic multigrid
method, which has been shown by Brennan and Kirby [9] to perform well for the
coupled pressure-temperature equations in the non-PML region. Our numerical re-
sults demonstrate that the preconditioner for the Helmholtz problem with PML is
scalable and is independent of the mesh size. We also prove that the number of non-
unitary eigenvalues of the preconditioned system is bounded above by the number of
unknowns on the interface between the computational domain and the PML region.

In section 2, we provide a brief description of the coupled pressure-temperature
equations and describe our computational model of QEPAS and ROTADE sensors. In
section 3, we discuss the preconditioner we developed for the Helmholtz problem with
PML. In section 4, we derive a finite element discretization of the coupled pressure-
temperature equations and describe the global preconditioning scheme. In section 5,
we present numerical results we obtained using our custom Helmholtz preconditioner
and for the global pressure-temperature problem. Finally, in section 6 we summarize
our results and discuss future work.

2. Numerical model. To date realistic mathematical modeling of trace gas
sensors has focused on simplified models of either the thermal or acoustic components
of the process (Petra et al. [48, 49] and Firebaugh et al. [23, 24]). In this paper
we study the unified thermoacoustic system of Morse and Ingard [42] which models
a coupled pressure disturbance, P , and temperature disturbance, T , generated by
a heat source, S. Our approach builds on previous work by Cao and Diebold [12],
Brennan et al. [9], and Kaderli et al. [30]. This system, derived from the linearized
Navier Stokes equations by Morse and Ingard [42], is given by

∆P − γ

c2

(
∂2

∂t2
− `vc

∂

∂t
∆

)
(P − αT ) = 0,(2.1a)

`hc∆T −
∂

∂t

(
T − γ − 1

γα
P

)
= − 1

ρCp
S.(2.1b)

The parameters in System (2.1) are the isentropic expansion factor of the gas, γ, the
speed of sound in the gas, c, the rate of change of pressure with respect to temperature
at constant volume, α, the density, ρ, and the specific heat capacity, Cp. The constant
`h = κ/(ρcCp) is the thermal characteristic length, where κ is thermal conductivity,
and `v = µ(4/3+η/µ)/(ρc) is the characteristic length of viscosity, where η and µ are
the bulk and dynamic viscosity of the fluid, respectively. The function, S, represents
the heat power density deposited into the gas [41], which we model as a time-harmonic
function of the form [48]

(2.2) S(x, t) =
αeffWL

πw2(y)
exp

[
−2[(x− xs)2 + (z − zs)2]

w2(y)

]
cos(ωt),
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where the constant αeff is the effective absorption coefficient of the gas, WL is the
total laser power, and ω is the angular frequency of the laser. The laser beam is
aligned with the y-axis, and is focused at the point (xs, ys, zs), where ys is halfway
between the front and back faces of the tuning fork. The function w(y) is the width
of the laser beam, which for ROTADE sensors is given by [49]

(2.3) w(y) = σ

√
1 +

(
y − ys
yR

)2

,

where σ is the beam width at the focal point, and yR = πσ2/λ is the Rayleigh length,
with λ being the wavelength of radiation [53]. For QEPAS sensors [48], the width of
the beam is modeled by the constant w(y) = σ.

2.1. Helmholtz version of thermoacoustic equations. Since the laser op-
erates at a single frequency, the solution to the thermoacoustic equations (2.1) is
time-harmonic, with the pressure, temperature, and laser source being of the form

(2.4) P (x, t) = <e
[
P (x)e−iωt

]
, T (x, t) = <e

[
T (x)e−iωt

]
, S(x, t) = <e

[
S(x)e−iωt

]
.

Under this assumption, we obtain a coupled system of Helmholtz equations,

∆P +
γ

c2
(ω2 − i`vcω∆)(P − αT ) = 0,(2.5a)

`hc∆T + iω

(
T − γ − 1

γα
P

)
= − 1

ρCp
S,(2.5b)

where the functions P , T , and S now depend only on the spatial variable x.
We now reformulate the thermoacoustic equations (2.5) by using Equation (2.5b)

to eliminate ∆T from Equation (2.5a). We also rewrite Equation (2.5b) in a form
such that the coefficient of ∆T is thermal conductivity κ to obtain

ξ∆P + a1P + a2T = ia3S,(2.6a)

κ∆T + ib2T − ib1P = −S.(2.6b)

Except for ξ, the constants in System (2.6) are all real and positive and are given by

a1 = k2

(
γ − `v

`h
(γ − 1)

)
, a2 = k2γα

(
`v
`h
− 1

)
, a3 =

γαk2

ωρCp

`v
`h
,

b1 = ρCp
ω(γ − 1)

γα
, b2 = ωρCp,(2.7)

k =
ω

c
, ξ = 1− iγk`v.

For trace gas sensors, k ≈ 500 [32], and so in Equation (2.6a), a1 and a2 are both
large, with a2 being two orders of magnitude greater than a1 for QEPAS sensors. The
parameter ξ is a small perturbation of 1, and a3 is small. In Equation (2.6b), b1 and
b2 are large constants in comparison to thermal diffusivity constant κ.

2.2. Boundary and interface conditions. We solve the thermoacoustic sys-
tem (2.6) in a fluid domain, ΩG, that surrounds a QTF, ΩQ, chosen so that Ω =
ΩG ∪ ΩQ is a box. To prevent artificial reflections off the boundary of the box, we
include an absorbing boundary layer as shown in Figure 2.1. We denote the front
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ΩG

ΩQ

PML region

Γside

ΓI

ΓFB

Fig. 2.1. Domain for the numerical simulation of the thermoacoustic equations in the presence
of a QTF. The tuning fork is shaded purple and the surrounding gas is colored pink. The absorbing
boundary layer is shaded tan, and is only implemented in the x and z-directions.

and back faces (parallel to the xz-plane) of Ω by ΓFB, the side faces (perpendicular
to the xz-plane) by Γside, and the interface between the tuning fork and fluid by ΓI.
The boundary of ΩG is therefore given by Γ = ΓI ∪ Γside ∪ ΓFB.

On the boundary of the tuning fork, we impose zero Neumann boundary condi-
tions for pressure,

(2.8) ∇P · n = 0,

where n is the normal vector. Here, for the purpose of modeling the acoustic and
thermal waves, we have assumed that the surface of the tuning fork is rigid. This
assumption is reasonable since the amplitude of vibration of the tuning fork is several
orders of magnitude smaller than the characteristic lengths of the system.

We model the temperature, TQ, in the interior of the tuning fork using the
Helmholtz form of the classical heat equation,

(2.9) ∇ · (κQ∇TQ) + ic1TQ = 0 in ΩQ,

where κQ = diag(κ1, κ2, κ3) is the diagonal thermal conductivity tensor of quartz,
and c1 = ωρQCp,Q, with ρQ and Cp,Q being the density and specific heat capacity
of quartz, respectively. We couple Equations (2.5b) and (2.9) using the interface
conditions on ΓI,

(2.10)

{
T (x) = TQ(x) (continuity of heat),

κ(∇T · n) = (κQ∇TQ) · n (continuity of flux).

Since the laser beam passes through the front and back faces of the box, we
require different boundary conditions on ΓFB than on Γside. Provided that the front
and back faces are sufficiently far from the QTF, near ΓFB the thermoacoustic waves
mostly propagate outward from the axis of the beam. Therefore, we assume that
the boundary condition on ΓFB is given by the solution, (PFB, TFB), to the two-
dimensional thermoacoustic equations on ΓFB. To be compatible with the 3D problem,
we also include an absorbing layer on the edges of the front and back faces.

To model the absorbing layer of the 3D box, Ω, we apply the Perfectly Matched
Layer (PML) method of Berenger [8] to the lateral faces, Γside. Berenger’s idea was
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−a−a∗

−b

−b∗

Fig. 2.2. A two-dimensional model of a computational domain ΩC surrounded by an absorbing
layer ΩPML. Since the solution decays exponentially, zero Dirichlet boundary conditions on the outer
boundary Γside of the PML region are sufficient.

to surround the computational domain by an additional layer of absorbing material
designed to exponentially attenuate all outgoing waves. In Figure 2.2, we show a
typical 2D domain for PML. Berenger’s original formulation of the PML method was
reformulated by Chew and Weedon [14] in terms of complex coordinate stretching.
Using this approach, Lassas and Sommersalo [36] proved that the solution in a fi-
nite domain surrounded by PML converges exponentially to the true solution with
Sommerfeld radiation conditions as the width of the absorbing layer tends to infinity.
The complex stretching in the x-direction can be achieved by replacing the partial
differential operator ∂

∂x by 1
βx(x)

∂
∂x , where [14]

(2.11) βx = βx(x) =

{
1 for |x| ≤ a,
1 +

i

ω
σx(x) for a < |x| ≤ a∗.

We chose the function σx(x), which determines the rate at which the solution decays
in the absorbing layer, to be

(2.12) σx(x) = A
(x− a)2

(a∗ − a)2
,

where the choice A = 50ω gave satisfactory performance for the mesh we used. We
implement PML in the z-direction similarly, but in the y direction we use the boundary
conditions on ΓFB given above.

Since heat dissipates rapidly, the standard approach for modeling heat phenomena
is to impose zero boundary conditions at a sufficient distance from thermal sources.
However, due to the coupling with the acoustic wave, such boundary conditions may
no longer be appropriate. To better understand the far-field behavior of the coupled
system, in supplementary section SM1 we derive a cylindrically symmetric solution
to the thermoacoustic equations in all of R3 for a laser beam of constant width.
The formula we obtain shows that in the far field, the temperature decays at a rate
proportional to the pressure, which indicates that we need to implement PML for both
pressure and temperature. Therefore, with the inclusion of PML, the thermoacoustic
system (2.6) becomes

ξ (∇ ·B(x)∇P ) + a1βxβzP + a2βxβzT = ia3βxβzS,(2.13a)

κ (∇ ·B(x)∇T ) + ib2βxβzT − ib1βxβzP = −βxβzS,(2.13b)

where B(x) = diag[βzβ
−1
x , βxβz, βxβ

−1
z ].
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3. A preconditioner for a scalar Helmholtz problem with PML. In sec-
tion 4, we will describe the block preconditioner that we use to solve the entire system
of equations for pressure and temperature in the gas (2.13) and temperature in the
tuning fork (2.9). This method reduces the problem to that of solving a Helmholtz
problem with PML for a single unknown (either pressure or temperature), of the form

(3.1)

{
∇ · (B(x)∇u) + βxβyk

2u = f, x ∈ Ω,
u = 0, x ∈ ∂Ω,

where Ω is a box in R2 or R3. As in Figure 2.2, we assume that Ω = ΩC ∪ ΩPML is
the disjoint union of the computational domain, ΩC, and the PML region, ΩPML. In
subsections 3.1 and 3.2 we derive a finite element version of the preconditioner for the
subdomains, and in subsection 3.3 we show how this preconditioner can be applied to
the global problem.

3.1. Continuous approximation. We begin by formulating the continuous
version of the preconditioner. We partition the global problem (3.1) into subproblems
over the computational domain ΩC and the PML region ΩPML,{

∆v + k2v = f, x ∈ ΩC,
ikv +∇v · n = ikw +∇w · n, x ∈ I,(3.2)  ∇ · (B(x)∇w) + βxβyk

2w = f, x ∈ ΩPML,
ikw +∇w · n = ikv +∇v · n, x ∈ I,
w = 0, x ∈ ∂Ω,

(3.3)

where I = ΩC ∩ ΩPML is the interface between the computational and PML regions.
It can be shown [51] that the solution of the original problem (3.1) is equivalent to
the solution of the coupled system (3.2) and (3.3), with

(3.4) u =

{
v, x ∈ ΩC,
w, x ∈ ΩPML.

Instead of solving Equations (3.2) and (3.3) simultaneously, we obtain an approximate
solution by first solving a simplified problem for v in ΩC and then feeding the solution
into Equation (3.3) and solving for w. Specifically, we first solve the problem in the
computational domain with zero right hand-side for the transmission conditions, given
by {

∆v + k2v = f, x ∈ ΩC,
ikv +∇v · n = 0, x ∈ I.(3.5)

This subproblem is also well-posed under the assumption that k2 is not a generalized
eigenvalue of the system [1]. This approximation is a common approach for imposing
reasonable but not exact boundary conditions for Helmholtz problems [22, 37]. The
solution to Equation (3.5) is then fed into the exterior problem (3.3) as a boundary
condition on the interface:{

∇ · (B(x)∇w) + βxβyk
2w = f, x ∈ ΩPML,

w = v, x ∈ I.(3.6)
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3.2. Matrix formulation. We now focus on the linear algebra formulation of
the problems given in (3.5) and (3.6). The variational problem for Equation (3.5) is
to find a solution v ∈ H1(ΩC) such that

(3.7) −
∫

ΩC

∇v · ∇q dx + k2

∫
ΩC

vq dx+ ik

∫
I
vq ds =

∫
ΩC

fq dx,

for all q ∈ H1(ΩC), which, using the finite element method, gives rise to a linear
system of the form

(3.8) H̃Cv = M̃CfC,

where M̃C is the mass matrix assembled over the computational domain, and H̃C is
obtained from the discretization of the left hand-side of the variational problem (3.7).

In the PML region, we only need to solve Equation (3.6) for the unknowns on
the interior of ΩPML, since the values of w on the interface I are supplied by the
Dirichlet boundary condition. However, instead of solving the exterior problem (3.6)
directly, we can use the global formulation (3.1) to obtain an equivalent solution in the
PML region where we impose the additional condition that u = v in ΩC. Specifically,
suppose we have discretized Equation (3.1) as

(3.9) Hu = Mf = b,

where M is the mass matrix over the entire domain Ω, and H is the discretization of
the Helmholtz operator in Equation (3.1). If we write u as uT =

[
vT wE

T
]
, where

v are the entries corresponding to basis functions whose support intersects ΩC, and
similarly decompose fT =

[
fT
C fT

E

]
, then the linear system (3.9) can be partitioned as

(3.10)

[
HC HCE

HEC HE

] [
v
wE

]
=

[
MC MCE

MEC ME

] [
fC
fE

]
.

We emphasize here that the solution to System (3.10) is a finite element solution of
the original Helmholtz problem with PML given by Equation (3.1). Since we have an
approximation of v available as the solution of the linear system (3.8), we can use it
to obtain wE from the second row in Equation (3.10). Specifically, we just need to
solve for wE in

(3.11) HEwE = (MECfC + MEfE)−HECv.

Thus, the approximate solution to linear system (3.9) on Ω is given by Equations (3.8)
and (3.11), namely

(3.12)

[
v
wE

]
=

[
H̃−1

C M̃CfC
H−1

E [(MECfC + MEfE)−HECv]

]
.

3.3. Preconditioner. In this subsection, we demonstrate how the approximate
solution (3.12) can be used to formulate a preconditioner, P, for the entire sys-
tem (3.9). An important consideration here is that the implementation of the GMRES
algorithm [52] requires us to apply the preconditioner to vectors in the Krylov sub-
space1

(3.13) Ki(HP−1,b) = span
{
b, (HP−1)b, (HP−1)2b, . . . , (HP−1)i−1b

}
.

1The sequence of iterates shown is for the right-preconditioned GMRES method. Due to spectral
equivalence however, left preconditioning typically exhibits the same rate of convergence [52].



10 A. SAFIN, S. MINKOFF, J. ZWECK

Algorithm 3.1 Preconditioner for a scalar Helmholtz problem with PML: u = P−1b

1: Initialize auxiliary vector z of same size as u
2: Solve Mz = b using the conjugate gradient (CG) method

3: Extract zC from z and compute zC = M̃CzC

4: Solve H̃Cv = zC using GMRES
with algebraic multigrid preconditioner (AMG) . Gives solution on ΩC

5: Compute zE = bE −HECv
6: Solve HEwE = zE using sparse LU . Gives solution on int(ΩPML)

7: Return u =

[
v
wE

]

Assuming we start with zero as our initial guess for the solution, the first vector in the
Krylov subspace can be written as a product of the mass matrix with the discretized
function f :

(3.14) b =

[
bC

bE

]
= Mf =

[
MC MCE

MEC ME

] [
fC
fE

]
.

We assume that all other vectors in the Krylov subspaces (3.13) have a similar form
(i.e. mass matrix times a right-hand side vector). In this case, it is sufficient to
show how to apply the preconditioner to b. First, we observe that the solution in the
computational domain is given by linear system (3.8), which, using Equation (3.14),
can be expressed in block form as

(3.15)

[
v
0

]
=

[
H̃−1

C M̃CfC
0

]
=

[
H̃−1

C 0
0 0

] [
M̃C 0
0 0

]
M−1b.

Having obtained v, we compute wE using Equation (3.11), noting that MECfC +
MEfE = bE. The resulting solution can be equivalently expressed as

(3.16)

[
v
wE

]
= P−1b =

[
H̃−1

C 0

−H−1
E HECH̃

−1
C H−1

E

] [
M̃C 0
MEC ME

]
M−1b.

The derivation above gives rise to Algorithm 3.1, which follows naturally from Equa-
tion (3.15) and the second row in Equation (3.12). In the algorithm, we also list the
solvers that we have used for the particular linear subproblems. In Step 2, we use the
conjugate gradient method since the mass matrix is symmetric positive-definite. In
Step 4, we use the GMRES method preconditioned with algebraic multigrid (AMG)
which has been shown to work well for this class of problems [9]. Finally, we use a di-
rect solver for the highly indefinite Helmholtz problem in ΩPML, where we reduce the
number of unknowns using adaptive mesh refinement and choose a large coefficient
for the attenuation function (2.12).

We now provide an estimate of the number of non-unitary eigenvalues of P−1H.
This result shows that GMRES converges to the solution of the preconditioned system
in a number of iterations that is much smaller than the global size of the problem.

Theorem 3.1. Let V be the finite element space used to obtain the discretized
linear system (3.9). Then the number of nonunitary eigenvalues of P−1H is at most
equal to the dimension of VI := span{φi ∈ V : φi ∩ I 6= ∅}.
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Proof. Rather than focusing on P−1H, we instead study HP−1 which has an
equivalent spectrum [52]. Using Equations (3.10) and (3.16), we can obtain an explicit
formulation of this operator as

(3.17) HP−1 =

[
Q QMCEM

−1
E + HCEH

−1
E

0 I

]
,

where Q = SHH̃
−1
C M̃CS

−1
M is defined in terms of the invertible Schur complements

SH = HC −HCEH
−1
E HEC and SM = MC −MCEM

−1
E MEC.

We now show that SH and H̃C differ only in the rows and columns that correspond
to VI . Let V = VC ⊕ VE, where VC = span{φi ∈ V : supp(φi) ∩ ΩC 6= ∅} and
VE = span{φi ∈ V : supp(φi) ∩ ΩC = ∅}. Then for any φi ∈ VE and φj ∈ VC\VI we
have

(3.18) (HEC)ij = a(φi, φj)Ω = a(φi, φj)ΩC
+ a(φi, φj)ΩPML

= 0,

where a(·, ·)Λ is the variational form of Equation (3.1) on some domain Λ. Since
(HEC)ij is only nonzero if φj ∈ VI , we further partition HEC =

[
0 HEI

]
, where

the columns of HEI correspond to basis functions in VI . Using this formulation, we
obtain

(3.19) HCEH
−1
E HEC =

[
0

HIE

]
H−1

E

[
0 HEI

]
=

[
0 0
0 ?

]
,

and hence

(3.20) SH −HC = −HCEH
−1
E HEC =

[
0 0
0 ?

]
.

Next, we observe that H̃C also differs from HC in the same (2, 2)-block, since

(HC − H̃C)ij =

[
a(φi, φj)Ω

]
−
[
a(φi, φj)ΩC

+ ik

∫
I
φiφj ds

]
= a(φi, φj)ΩPML

− ik
∫
I
φiφj ds = 0(3.21)

if either φi /∈ VI or φj /∈ VI . Combining the results in (3.20) and (3.21), we find

that that SH and H̃C only differ in the (2, 2)-block, as do M̃C and SM by the same
argument. Therefore,

(3.22) Q =
(
SHH̃

−1
C

)(
M̃CS

−1
M

)
=

[
I ?
0 ?

] [
I ?
0 ?

]
=

[
I ?
0 QI

]
.

Taking advantage of the triangular structures in (3.17) and (3.22), we conclude that

(3.23) p(λ) = det(HP−1 − λI) = (λ− 1)dim(V)−dim(VI) det(QI − λI).

Hence eigenvalue λ = 1 has an algebraic multiplicity of at least dim(V) − dim(VI),
and therefore the number of nonunitary eigenvalues is at most dim(VI).

The theorem above shows that the preconditioned operator is block upper triangular
with diag(HP−1) = {I,Q, I}, where dim(Q) = dim(VI). Hence we can show that the
degree of the minimal polynomial [43, 52] of this preconditioned operator is at most
dim(VI) + 2, and therefore the preconditioned operator converges to the solution in
at most a number of iterations that is roughly equal to the size of the interface.
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Corollary 3.2. The GMRES algorithm applied to the preconditioned linear sys-
tem HP−1x = b converges to the solution in at most dim(VI) + 2 iterations.

Similar theoretical results for the overlapping multiplicative Schwarz preconditioner
are established in Kahou et al. [31]. We finally note that the bound in Corollary 3.2
is not tight, since the numerical results in subsection 5.1 demonstrate that the pre-
conditioned operator converges to the solution in just a few iterations.

4. Finite Element Discretization. In this section, we derive a global linear
system that represents the finite element discretization of the thermoacoustic equa-
tions (2.13) and the heat equation (2.9) with couplings provided by the continuity
conditions given in (2.10). The relevant subdomains and boundaries are defined in
subsection 2.2. For the thermoacoustic equations, we seek to obtain solutions (P, TG)
in a finite element space

(4.1) WG = H1
0(ΩG)×H1

0(ΩG),

where H1
0 represents the Sobolev space of complex-valued functions

(4.2) H1
0(ΩG) =

{
u(x) ∈ L2(ΩG)

∣∣∣∣ ∇u ∈ L2(ΩG), u(x) = 0 for x ∈ Γside ∪ ΓFB

}
.

Here we do not require the functions in WG to be zero on ΓI. For the tuning fork,
the corresponding space is

(4.3) WQ = H1(ΩQ) =

{
u(x) ∈ L2(ΩQ)

∣∣∣∣ ∇u ∈ L2(ΩQ)

}
.

For both domains, we choose the test functions to come from the same space as
the trial functions. Let (φ, ψ) ∈ WG be test functions for (P, TG), and ζ ∈ WQ

be the test function for TQ. We derive the variational form of the thermoacoustic
equations (2.13) by multiplying (2.13a) by φ, (2.13b) by ψ, integrating over ΩG and
performing standard integration by parts. We perform a similar procedure for the heat
equation (2.9). Using the boundary conditions and the continuity conditions (2.10),
the variational problem becomes that of finding (P, TG) ∈ WG and TQ ∈ WQ such
that

− ξ〈B(x)∇P,∇φ〉+ a1〈βxβzP, φ〉+ a2〈βxβzTG, φ〉 = ia3〈S, φ〉,(4.4a)

− κ〈B(x)∇TG,∇ψ〉 − ib1〈βxβzP,ψ〉+ ib2〈βxβzTG, ψ〉(4.4b)

= −〈S, ψ〉 −
∫

ΓI

[(κQ∇TQ) · n]ψ ds,

− 〈κQ∇TQ,∇ζ〉+ ic1〈TQ, ζ〉 = −κ
∫

ΓI

(∇TG · n) ζ ds,(4.4c)

for all (φ, ψ) ∈ WG and ζ ∈ WQ. Here the notation 〈· , ·〉 represents the standard
L2 inner product for complex functions. The variational formulation leads to a linear
system Au = b, where

A =

 a1M− ξK a2M 0
−ib1M ib2M− κK NQ→G

0 NG→Q ic1MQ −KQ

 ,
u =


−→
P−→
T−→
TQ

 , b =

 ia3
−→
S P

−−→S T

0

 ,(4.5)
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with stiffness matrices, mass matrices, and load vectors defined by,

Kij =

∫
ΩG

∇φi(x)TB(x)∇φj(x) dx, Mij =

∫
ΩG

βxβzφi(x)φj(x) dx,

(KQ)ij =

∫
ΩQ

∇ξi(x)TκQ∇ξj(x) dx, (MQ)ij =

∫
ΩQ

ξi(x)ξj(x) dx,(4.6)

(
−→
S P)i =

∫
ΩG

φi(x)S(x) dx, (
−→
S T)i =

∫
ΩG

ψi(x)S(x) dx.

The interfacial matrices, N, represent couplings between TG and TQ:

(NQ→G)ij =

∫
ΓI

[(κQ∇ζj(x)) · n]ψi(x) ds,(4.7a)

(NG→Q)ij = κA

∫
ΓI

[∇ψj(x) · n] ζi(x) ds.(4.7b)

Since we need to adequately resolve both the laser and the air-QTF interface, the size
of the problem is often large. Thus, if we are to solve the linear system (4.5) using
the GMRES algorithm [52], an efficient preconditioning scheme is essential. A partial
motivation for our approach is due to the recent work by Brennan and Kirby [9],
who tested a variety of preconditioners including block Jacobi and block Gauss-Seidel
preconditioners for the thermoacoustic equations (2.5) on a rectangular domain. To
solve the linear system (4.5), we use Brennan’s block Gauss-Seidel preconditioner with
an extension that corresponds to the heat equation in the QTF, given by

(4.8) Pglobal =

 a1M− ξK 0 0
−ib1M ib2M− κK 0

0 NG→Q ic1MQ −KQ

 .
The action of the preconditioner requires solving the diagonal blocks in (4.8). In
particular, implementation of the PML method adds significant challenges to inverting
the first two diagonal blocks. For the pressure block HP := a1M − ξK and the
temperature block HT := ib2M−κK we use the custom preconditioner from section 3,
as formulated in Algorithm 3.1. Finally, we solve the block that corresponds to
the heat equation in the QTF using the GMRES algorithm preconditioned with the
algebraic multigrid (AMG). In Algorithm 4.1, we assemble the pieces together to form
the action of the preconditioner on bT = [bT

P bT
TA

bT
TQ

].

5. Numerical results. In this section, we present our numerical results both
for the performance of the custom preconditioner (3.16) and the solution of the ther-
moacoustic system (4.5). The computational results shown here were obtained on the
Stampede 1 cluster at the Texas Advanced Computing Center at the University of
Texas at Austin.

The finite element matrices were assembled using the deal.II package [7]. The
mesh was generated using the Gmsh package [25], and automatic mesh partitioning
for the parallel computation was done using p4est [11]. As complex numbers are
not yet fully supported within deal.II, we decompose the variables into real and
imaginary components and assemble the real system by using the distributed matrices
and vectors available in the Trilinos package [29]. We then convert the real matrices
and vectors to their complex version, stored as PETSc objects [5, 6]. For the sparse
parallel LU solver we use MUMPS [2, 3]. In order to reduce the number of unknowns,
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Algorithm 4.1 Global preconditioner (4.8): u← P−1
globalb, with

bT = [bT
P bT

TA
bT
TQ

]

1: Initialize auxiliary vector zTA
and zTQ

of same size as bTA
and bTQ

, respectively

2: Approximate p ≈ H−1
P bP using Algorithm 3.1 implemented for pressure

3: Block-eliminate pressure: zTA
= bTA

+ ib1Mp
4: Approximate τ ≈ H−1

T zTA
using Algorithm 3.1 implemented for temperature

5: Determine zTQ
= bTQ

−NG→Qτ
6: Solve (ic1MQ −KQ) τQ = zTQ

with GMRES preconditioned by AMG

7: Return u =

 p
τ
τQ



x

z

Laser center (xc, yc, zc)

hu

w g

hb

1
2g

tx

z

y

Fig. 5.1. Left: Geometry of the QTF. Right: Visualization of our adaptive refinement strategy
of a 2D slice passing through the tuning fork, as shown on the left. The QTF domain is shown in
blue, the gas in pink and the PML in brown.

we use adaptive refinement as shown in Figure 5.1 (right), available in the deal.II

package. In particular, we perform multiple refinements near the laser in order to
resolve the beam accurately. We also use a coarse mesh in the PML region to reduce
the size of the PML problem for the LU solver.

The geometry of the tuning fork is shown in Figure 5.1 (left), and the parameters
describing the tuning fork are listed in Table 5.1. We assume that the experiment
is conducted in Nitrogen gas (N2), although other choices are also possible [19, 46,
49]. The parameter values for the laser source are given in Table 5.2. (Values in
Tables 5.1 and 5.2 are taken from Petra et al. [49]). We implemented our code to
support simulations of experiments in which the ambient pressure ranges from 5 to
800 Torr (760 Torr = 1 atm). For our numerical simulations, we chose parameters
that correspond to QEPAS and ROTADE sensors (see Table 5.3).

5.1. Preconditioner for the scalar Helmholtz equation with PML. We
first study the characteristics of our custom preconditioner (3.16) for a finite element
discretization of the scalar Helmholtz problem with PML given in (3.1). We scale
our problem to a unit domain, which yields a wavenumber of k ≈ 0.5. However,
this small wavenumber affects the implementation of PML. The “rule of thumb”
approach to modeling PML regions is to make the width of the domain approximately
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Table 5.1
QTF parameters: Cp,Q (Specific heat capacity), ρQ (density), κj (coefficients of the thermal

conductivity tensor), w (tine width), g (gap between the tines), hu (height of the tine), hb (height
of the QTF from the bottom up to the gap), and t (tine thickness).

Constant Value Units

Cp,Q 733 J/(kg·K)

ρQ 2650 kg/m3

κ1 6.5 W/(m·K)

κ2 6.5 W/(m·K)

κ3 11.3 W/(m·K)

Constant Value [mm]

w 0.6

g 0.3

hu 3.75

hb 2.33

t 0.34

Table 5.2
Laser source parameters for an experimental setup with nitrogen gas.

Constant Interpretation Value Units

ω Angular frequency of laser 2.061 · 105 rad/s

αeff Absorption coefficient of N2 0.05 1/m

WL Laser power 3 · 10−2 W

σ Beam waist 7.5 · 10−6 m

yR Rayleigh length πσ2/λ 1.126 · 10−4 m

half a wavelength [13], and to use a relatively small attenuation coefficient, A, in
Equation (2.12). However, these choices of parameters are not practical, since the
wavelength corresponding to our problem, ` = 2π/k ≈ 4π, would generate too wide of
a PML region. Instead we opt for a thin PML region and relatively large attenuation
coefficients. Specifically, we chose a PML layer of thickness 0.16 with A = 400ω. The
trade-off with this approach however is that the resulting problem is more indefinite.

We begin by testing our approach on the pressure block H with the right-hand
side being the scaled laser source term given in Equation (2.2). In Figure 5.2, we
compare the spectrum of the unpreconditioned (left) and the preconditioned (right)
operators for the Helmholtz equation with PML for a problem with 4489 degrees of
freedom (DoFs). The result in Figure 5.2 (right) shows that the eigenvalues of the pre-
conditioned matrix are clustered near one and indicates that the eigenspectrum is no
longer indefinite. We also find that the number of nonunitary eigenvalues for the pre-
conditioned operator is equal to 200, which agrees with the statement of Theorem 3.1
as the size of the interface VI for this problem is also 200.

We now turn to the performance of the preconditioner. In the 2-dimensional
case, the strong scaling plot in Figure 5.3 (left) demonstrates that the preconditioner
parallelizes fairly well. In particular, the scalability of the LU sub-solver was not a
significant issue due to the relatively small problem size in the PML region. In Fig-
ure 5.3 (right), we show the outer GMRES residuals of the preconditioned iterations
as a function of problem size. The plots follow nearly the same profile regardless of
the size of the problem, suggesting that for the Helmholtz problem with PML there
exists a mesh-independent bound for the rate of convergence of the preconditioner
with respect to problem size. This idea is further supported by Table 5.5, where we
show how the extreme eigenvalues and the condition number of the preconditioned
system depend on the number of degrees of freedom, compared to the condition num-
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Table 5.3
Constants for the thermoacoustic experiments using N2 gas for both the ROTADE and QEPAS

parameter regimes. References are given in the rightmost column.

Constant Interpretation ROTADE QEPAS Units

T0 Ambient temperature 20 20 ◦C

[48],

[49]

P0 Ambient pressure 5 450 Torr

κ
Thermal conductivity

of N2
0.0254 0.0254 W/(m·K)

ρ Density of N2 0.007662 0.6898 kg/m3

Cp
Specific heat capacity

of N2
1039.7 1039.7 J/(kg·K)

µ Shear viscosity 1.785 · 10−5 1.785 · 10−5 kg/(m·s) [16]

η Bulk viscosity 1.317 · 10−5 1.317 · 10−5 kg/(m·s) [15]

γ
Isentropic expansion

factor of diatomic gas
7/5 7/5 none

[42]

c Speed of sound in N2 348.7 348.7 m/s

α
∂P/∂T under

constant volume
2.274 204.656 Pa/K

`h
Characteristic length

of conductivity
9.124 · 10−6 1.013 · 10−7 m

`v
Characteristic length

of viscosity
1.383 · 10−5 1.5347 · 10−7 m
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Fig. 5.2. Left: Eigenvalues of the unpreconditioned block H. Right: spectrum of the precondi-
tioned system P−1H. Problem size: 4489 DoFs.

ber of the unpreconditioned system. The results demonstrate that these quantities
remain fairly uniform for the preconditioned system as problem size increases.

Both Krylov subspace solvers in Algorithm 3.1 cost O(Nk), where N is the global
size of the linear system, and k is the number of iterations required to solve the par-
ticular problem. Since our numerical experiments show that the number of iterations
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Fig. 5.3. Left: strong scaling for the custom preconditioner (2.57 million DoFs). Right: nor-
malized residuals of the preconditioned GMRES iterations as a function of problem size N .

Table 5.4
The number of unknowns in the PML region as a function of global problem size.

Problem size n 12089 42905 164521 647737 2574153

PML region size 1888 2504 3720 6136 10952

for all the Krylov solvers remains nearly fixed as the problem size increases, we can
treat k as constant, and therefore conclude that both CG and GMRES solve their
corresponding problems at a cost of O(N). However, the direct solver does not scale
linearly, as the cost of factorization is O(N2

PML) [39], where NPML is the size of the
problem in the PML region. Therefore, for the results in this paper, we chose to
minimize the computational footprint of the LU solver by using a coarse initial mesh
and refining only in the computational domain, not in the PML region where the
direct solver is used. In our simulations this approach worked well since the PML
parameters were chosen so that the PML adequately damps reflections even with the
coarse mesh. In Table 5.4, we show a comparison between the global problem size and
the number of unknowns in the PML region. The results in the table demonstrate
that the size of the PML region grows at a rate proportional to the square root of the
global problem size.

Finally, we study the behavior of the preconditioner for the Helmholtz problem
with PML for higher frequency cases. In order to focus solely on the performance
of the preconditioner, we use exact solvers on both subdomains and for the inversion
of the mass matrix. In Table 5.6, we show the number of outer GMRES iterations
and the extreme eigenvalues of the preconditioned operator for different values of
wavenumber k. Further numerical testing using the SLEPc package [28] shows that
the preconditioned system does not have eigenvalues with a negative real part up to
wavenumbers of k = 300. As is evident from the table, the largest eigenvalue is nearly
1 regardless of the problem size, while the smallest eigenvalue gradually tends to zero.
This is the expected behavior since all Helmholtz problems become more indefinite as
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Table 5.5
Smallest and largest eigenvalue, and the condition number of the preconditioned scalar

Helmholtz operator with PML in 2D as a function of the number of degrees of freedom. The last
column shows the condition number for the unpreconditioned operator.

DoF Count λmin(P−1H) λmax(P−1H) κ(P−1H) κ(H)

4.49K 0.717 + 0.029i 1.295 + 0.365i 2.085 2.19 · 105

12.1K 0.479 + 0.021i ≈ 1 2.335 7.33 · 105

42.9K 0.475 + 0.018i ≈ 1 2.676 2.83 · 106

165K 0.472 + 0.015i ≈ 1 2.896 1.12 · 107

648K 0.467 + 0.016i 0.996 + 0.226i 3.466 4.46 · 107

Table 5.6
Number of outer GMRES iterations for the preconditioner for the scalar Helmholtz problem

with PML for different values of the wavenumber k. In order to resolve the high-energy modes,
computations for the higher-frequency problems were done on finer meshes.

k
Outer

iteration count
λmin(P−1H) λmax(P−1H)

5 7 0.331 + 0.151i 1 + 0.349i

10 9 0.329 + 0.044i 1.01− 0.039i

20 11 0.237 + 0.172i ≈ 1

40 14 0.210 + 0.111i ≈ 1

60 17 0.202 + 0.087i ≈ 1

80 17 0.191 + 0.067i ≈ 1

100 18 0.185 + 0.048i ≈ 1

200 21 0.137 + 0.048i ≈ 1

k increases.

5.2. Results for the thermoacoustic equations. In this section we discuss
the numerical solution of the thermoacoustic equations in 3D. We discuss the val-
idation of the computational solution to the thermoacoustic equations (2.13) and
scalability results in section SM2. Here, we focus our attention on the full compu-
tational problem, namely the solution of the thermoacoustic equations with PML in
air coupled to thermal dissipation in the QTF. We solve the resulting linear system
given in (4.5) using GMRES with the block Gauss-Seidel preconditioner in (4.8). To
put the numerical solutions into context, we find it useful to compare them to

1. Solutions obtained by modeling only the thermal (ROTADE) or the acous-
tic (QEPAS) component of the process. In section SM3, we show how the
equations for the simplified models can be obtained from the thermoacoustic
equations under certain additional assumptions.

2. The free-space solution described in section SM1 in the absence of a QTF.
This comparison enables us to describe exactly how the presence of the QTF
affects the thermoacoustic wave.

In the following discussion, we define the origin of the coordinate system to be at the
bottom of the gap between the tines and halfway between the front and back faces of
the tuning fork (see Figure 5.1).
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Fig. 5.4. x-slices (for x ≥ xs) of temperature for three different models. The laser is centered
at xs = 0 mm. The white space represents the trace gas, and blue is the tuning fork.

We first present our results for the ROTADE parameter regime. To obtain optimal
sensitivity for a ROTADE sensor, the laser beam should be located near the bottom
of the gap between the tines. As in Petra et al. [49], we chose the axis of the laser
beam to pass through the center of the semi-cylinder of the tuning fork located at
(xs, zs) = (0, g/2). Since the solutions are symmetric about the plane x = 0, we
only plot them in the region x ≥ 0. In Figure 5.4, we show x slices of the amplitude
of temperature. The thick blue line is the temperature component of the numerical
solution of the thermoacoustic equations. The thin red line corresponds to the solution
of the heat equation only, and the dashed black line is the analytical solution. In
the regions near the laser source and interior to the tuning fork, the solution of
heat equation agrees closely with the solution to the thermoacoustic equations. The
agreement between the temperature solution of the thermoacoustic equations and
the solution to the classical heat equation at the interface between the QTF and
air provides a validation for the use of the heat equation in previous computational
model of a ROTADE sensor by Petra et al. [49]. However, outside the QTF the
solution of the thermoacoustic equations decays significantly less rapidly than does the
heat equation solution due to the relationship between the temperature and pressure
established in section SM1. On the QTF interface near the laser source, the amplitude
of temperature given by the simulations is nearly 4× 104 smaller than that given by
the free-space analytical solution due to the rapid heat dissipation into the QTF.
Nonetheless, we observe that the analytic free-space solution agrees closely with the
solution of the thermoacoustic equations at a sufficient distance from the QTF. The
far-field agreement between the two models can be attributed to the fact that the size
of the QTF is much smaller than the wavelength of the laser source.

In Figure 5.5 (left), we compare slices of the amplitude of pressure obtained by
solving the thermoacoustic equations (shown as a thick blue line) to those obtained
by solving the wave equation (thin red line), both with ROTADE parameters. In the
gap between the tines, the amplitude of the solution to the wave equation is nearly
double that of the thermoacoustic equations. This difference is also present in the
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Fig. 5.5. Comparison of solutions obtained using the thermoacoustic equations and the classical
wave equation with ROTADE parameters. Left: Computational solutions obtained by solving the
equations in the presence of a QTF. Right: Analytic free-space solutions obtained from solving the
two equations.

analytic solutions without a QTF, as can be observed in Figure 5.5 (right), where
we show slices of the amplitude of pressure in free-space. The thick blue line is the
analytic free-space solution to the thermoacoustic equations, and the thin red line is
the analytic solution to the wave equation. Both plots in Figure 5.5 show that for
the ROTADE parameter set, the pressure solution of the thermoacoustic equations is
significantly different from that of the acoustic wave equation.

In Figure 5.6, we show the results for the amplitude (left) and phase (right)
of the acoustic pressure for the QEPAS parameters given in Table 5.3. For these
simulations, the laser was focused near the top of the tines of the tuning fork, centered
at (xs, zs) = (0, hu). Since heat dissipates much more rapidly in the QEPAS regime,
the thermal wave is negligible at the surface of the QTF. Therefore, the acoustic
signal dominates, and the pressure component of the thermoacoustic equations is
nearly identical to the solution to the wave equation (not shown in the figure). On
the other hand, the difference between the profiles of the analytical and the numerical
solutions suggests an explanation for a discrepancy in [48]. In that paper, Petra
et al. approximated the pressure wave in the exterior of the QTF by analytically
solving the free-space wave equation with the laser source. They then estimated the
force that acts upon the tuning fork due to the acoustic wave by computing the
difference in pressure values on the inner and outer faces of the tines. Based on these
approximations, Petra et al. computed the electric current generated by the QTF.
However, their results were about two times smaller than the signal obtained from
experimental measurements. In our case, the force on the tuning fork obtained using
the thermoacoustic model is approximately 2.4 times larger than that obtained using
the analytical free space solution. By the linearity of the process, the recovered signal
would also be multiplied by the same amount, and thus would agree much more closely
with the experimental data.

Finally we describe a situation in which the coupling in the pressure-temperature
equations significantly alters the pressure solution relative to the solution of the acous-
tic wave equation alone. For this simulation, we used the ROTADE parameters, but
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Fig. 5.6. Plots of x-slices (for x ≥ xs) for pressure obtained with QEPAS parameters. Left:
comparison between the amplitude of pressure for the numerical solution to the thermoacoustic equa-
tion and the free-space solution to the coupled pressure-temperature equations. Right: comparison
between the phase of the thermoacoustic pressure solution obtained computationally and analytically.

centered the laser closer to one of the tines at (xs, zs) = (g/4, hu/2). This choice of
laser position is within the region where Kosterev and Doty [33] observed poor sensi-
tivity of the sensor. In Figure 5.7, we show that the pressure obtained by solving the
thermoacoustic equations predicts a smaller net force on the QTF than that obtained
from the wave equation. The primary reason for this difference is that in the ROTADE
parameter regime, the temperature acts as a source in the thermoacoustic pressure
equation (2.6a). Moreover, because of the thermal diffusion in Equation (2.6b), this
temperature source has a lower amplitude and is wider than the source function, S, in
the acoustic wave equation (SM3.4). This interaction between the temperature and
pressure waves is one of the factors that influences the sensitivity of the sensor in this
parameter regime.

6. Conclusions. We have developed and implemented a computational method
for solving the thermoacoustic equations in gas coupled with thermal dissipation in a
quartz tuning fork for the purpose of more accurate modeling of trace gas sensors. To
obtain the solutions in an efficient manner, we implemented a block preconditioning
scheme, with a custom preconditioner for the scalar Helmholtz equation with PML.
Our numerical simulations demonstrate that our approach is valid for modeling both
QEPAS and ROTADE sensors. Our results also suggest reasons for an experimental
phenomenon observed in Kosterev and Doty [33] and for a discrepancy between nu-
merical and experimental models in Petra et al [48], which have not previously been
explained. Finally, the numerical studies indicate that the preconditioner we derived
for the Helmholtz problem with PML is both scalable and mesh-independent.

The next phase of our modeling will include coupling to the thermoelastic dis-
placement of the tuning fork. In particular, we intend to model the damping of the
tuning fork as it moves through the viscous fluid by incorporating the viscous stress
tensor of the fluid into conditions on the interface between the air and the tuning
fork. In addition, we intend to use the thermoacoustic equations in a model for a
QEPAS sensor in which boundary layer effects may occur due to the close proximity
between the tuning fork and the surface of a microresonator tube [18]. We note that
recent interest in further miniaturization of QEPAS sensors [26] means the modeling
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Fig. 5.7. A comparison of pressure solutions for ROTADE parameters, with the laser beam
focused halfway up the gap between the tines and off-center at xs = g/4 (vertical dashed line).

of thermal and viscous boundary layers becomes more significant, emphasizing the
importance of our model.
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SUPPLEMENTARY MATERIALS: A PRECONDITIONED FINITE
ELEMENT SOLUTION OF THE COUPLED

PRESSURE-TEMPERATURE EQUATIONS USED TO MODEL
TRACE GAS SENSORS ∗

ARTUR SAFIN† , SUSAN MINKOFF† , AND JOHN ZWECK†

SM1. Analytic free-space solution. Here we briefly outline the derivation of
a cylindrically symmetric solution to the thermoacoustic equations (2.5) for a laser
source of constant width in the absence of a tuning fork. For the standard Helmholtz
problem, ∆u+ k2u = −f , where f has compact support, we want to ensure that the
solution consists of outgoing waves only, and in particular that there are no sources at
infinity. This requirement holds if we constrain the PDE by the Sommerfeld radiation
condition

(SM1.1) lim
r→∞

√
r

(
∂

∂r
− ik

)
u = 0,

where r is the distance from the origin. In the case that k is a complex wavenumber
with a positive imaginary part, this condition is equivalent to

(SM1.2) lim
r→∞

u = 0.

Under the assumption of cylindrical symmetry, the Helmholtz form of the thermoa-
coustic equations reduces to a coupled system of linear ordinary differential equations.
A fundamental set of solutions for this system is given by [SM1],

[
P (r)
T (r)

]
∈
{[

mpJ0(kpr/k)
αJ0(kpr/k)

]
,

[
mpH

(1)
0 (kpr/k)

αH
(1)
0 (kpr/k)

]
,

[
mtJ0(ktr/k)
αJ0(ktr/k)

]
,

[
mtH

(1)
0 (ktr/k)

αH
(1)
0 (ktr/k)

]}
,(SM1.3)

where k = ω/c, J0 is the zeroth-order Bessel function of the first kind, and H
(1)
0 is the

outgoing zeroth-order Hankel function. The constant kp corresponds to the acoustic
wavenumber, and kt corresponds to the thermal wavenumber. Both wavenumbers
have a positive imaginary component. The coefficients kp, kt, mp and mt are defined
in Kaderli et al. [SM1], and α is given in Table 5.3. Instead of using the basis functions
in the linear span (SM1.3), we choose to represent the solution as a linear combination
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of outgoing and incoming Hankel functions, respectively H
(1)
0 and H

(2)
0 ,

P (r) = AmpH
(1)
0 (kpr/k) + CmtH

(1)
0 (ktr/k)︸ ︷︷ ︸

Pout

+BmpH
(2)
0 (kpr/k) +DmtH

(2)
0 (ktr/k)︸ ︷︷ ︸

Pin

,

(SM1.4a)

T (r) = AαH
(1)
0 (kpr/k) + CαH

(1)
0 (ktr/k)︸ ︷︷ ︸

Tout

+BαH
(2)
0 (kpr/k) +DαH

(2)
0 (ktr/k)︸ ︷︷ ︸

Tin

,

(SM1.4b)

which also forms a numerically satisfactory set of solutions in the upper half of the
complex plane [SM5]. We can eliminate the physically irrelevant incoming solutions
Pin and Tin by imposing the Sommerfeld radiation condition (SM1.2) for both pressure
and temperature given by

(SM1.5) lim
r→∞

P (r) = lim
r→∞

T (r) = 0.

In order to obtain a unique solution we impose the additional conditions |P (0)| <∞
and |T (0)| <∞. Under these constraints, the solution is given by

P (r) = (c1(r/k)− c1)mpJ0(kpr/k) + c2(r/k)mpH
(1)
0 (kpr/k)(SM1.6a)

+ (c3(r/k)− c3)mtJ0(ktr/k) + c4(r/k)mtH
(1)
0 (ktr/k),

T (r) = (c1(r/k)− c1)αJ0(kpr/k) + c2(r/k)αH
(1)
0 (kpr/k)(SM1.6b)

+ (c3(r/k)− c3)αJ0(ktr/k) + c4(r/k)αH
(1)
0 (ktr/k),

where the constants ck(r) are of the form [SM1]

(SM1.7) ck(r) = Ak

∫ r

0

sξ(s)S(s) ds,

with ξ(r) being one of J0(kpr), J0(ktr), H
(1)
0 (kpr) or H

(1)
0 (ktr), and S is the source

function (2.2). Since S(r) decreases exponentially, ck := lim
r→∞

ck(r) exists. In the far

field, the solution is accurately represented in the form

(SM1.8) P (r) ≈ c2(r)mpH
(1)
0 (kpr/k) and T (r) ≈ c2(r)αH

(1)
0 (kpr/k).

Therefore, P and T are proportional to each other in the far field, with

(SM1.9)
P (r)

T (r)
→ mp

α
as r →∞.

SM2. Verification and scalability of the thermoacostic equations. In
this section, we provide intermediate results that provide accuracy and scalability
results for the thermoacoustic equations (2.13). Our first step is to ensure that we
have a correct implementation of the PML method, which we verify by we comparing
the results we obtain from the computational model with those obtained using an
analytical solution. In section SM1, we derived a formula for a cylindrically symmetric
analytic solution in R3 with no QTF present, for the case of a laser source of constant
width given by Equation (2.2) with w(y) = σ. We impose Sommerfeld radiation
conditions for both pressure and temperature at infinity. For this comparison, we
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Fig. SM2.1. Comparison of the computational solution to the thermoacoustic equations with
PML in 3D versus the analytic solution given in section SM1. The source function is centered at
r = 0, and the plot of the computational solution is obtained by slicing in the radial direction along
the x-axis. The solutions diverge near the boundary since we exponentially attenuate the numerical
solution in the PML region to prevent reflections back into the computational domain.

use ROTADE parameters for the thermoacoustic equations given in Table 5.3. The
domain for the FEM computation is [−1.5 · 10−3, 1.5 · 10−3]3, with the laser centered
at the origin, surrounded by a PML region of width 0.6× 10−3. In Figure SM2.1, we
show the amplitude of pressure (left) and temperature (right) as a function of radial
distance from the center of the laser. The results obtained with the computational
method are shown with a thin solid blue line, while the analytical results are shown as
thick dotted black lines. We observe excellent agreement between the solutions in the
computational domain, which indicates that PML has been implemented correctly.
The corresponding agreement in the phase (not shown here) is also excellent.

Using the same domain and parameters as in the previous paragraph, in Fig-
ure SM2.2 (left) we present the strong scaling results for the thermoacoustic equations
with PML (2.13) for a problem with 2.6 million unknowns. The solver time is shown
with the thin blue line, while the dashed black line represents perfect scalability.
With increased parallelization, we begin to observe poorer performance largely due
to inefficient load balancing: while each processor owns nearly the same number of
unknowns, the portion that belongs to the PML region may vary from one processor
to another. As the time it takes to perform LU factorizations scale quadratically with
respect to the number of unknowns, the speed of LU factorization largely depends on
the node with the greatest number of unknowns in the PML region.

Finally, in Figure SM2.2 (right), we show the outer residuals for the precondi-
tioned system for a range of problem sizes. The results indicate that the solutions
begins to converge rapidly after about 5 GMRES iterations.

SM3. The wave and heat equation approximations to the thermoacous-
tic system. Here we show how to obtain the wave and heat equations by imposing
certain assumptions on the thermoacoustic equations (2.5). By assuming that no
vibrational-to-translational processes take place, we obtain the heat equation

(SM3.1) `hc∆T + iωT = − 1

ρCp
S.
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Fig. SM2.2. Left: Strong scaling for the 3D thermoacoustic equations with PML without the
tuning fork. The dotted line represents perfect scalability. Right: Normalized residuals of the pre-
conditioned GMRES iterations for different mesh sizes.

This is the equation that Petra et al. used to model the ROTADE signal in [SM4].
The wave equation is obtained by omitting thermal diffusion and viscous damping,

i.e. by setting `h = 0 and `v = 0. Then, Equation (2.5b) becomes algebraic,

(SM3.2) iω

(
T − γ − 1

γα
P

)
= − 1

ρCp
S,

and can be used to eliminate T from Equation (2.5a) to obtain

(SM3.3) ∆P + k2P =
iγαω

c2ρCp
S.

Using a number of identities from Section 6.4 in [SM2], we find that γ− 1 = αγ/ρCp,
which allows us to obtain the wave equation that was used to model the QEPAS signal
in Petra et al. [SM3]:

(SM3.4) ∆P + k2P =
i(γ − 1)ω

c2
S.
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