
The Continuous Spectrum of Periodically
Stationary Pulses in a Stretched Pulse Laser

In this document we provides supplementary material for "The Continuous Spectrum of Periodically Stationary Pulses
in a Stretched Pulse Laser". We first demonstrate how the periodically stationary pulse breathes over one round trip
in the laser. Then, we provide a derivation of linearization of the round trip operator,R, about a pulse, ψ. Finally, we
present some additional numerical results to support the theory developed in the paper.

1. BREATHING OF A PULSE OVER ONE ROUND TRIP

In Fig. S1, we show how the periodically stationary pulse breathes over one-round trip of the laser. These results were
obtained using the parameter set with the stronger saturable absorber (`0 = 0.2, Psat = 50 W). We plot the amplitude of
the pulse exiting each component of the laser. We observe that the pulse undergoes significant changes before returning
to its original shape at the end of the round trip.

Fig. S1. Plot of the periodically stationary pulse associated with parameter set 2 showing the amplitude of the pulse
exiting each component of the laser.

2. LINEARIZATION OF THE ROUND TRIP OPERATOR

As in Eq. (1) of the paper, we define the round trip operator,R, to be the composition of the transfer functions of all the
components of the laser given by

R = POC ◦ PDCF ◦ PSMF2 ◦ PFA ◦ PSMF1 ◦ PSA. (S1)

Here, we regard each transfer function, P , as acting on a column vector of the form ψ = [Re ψ, Im ψ]T = [ψ1, ψ2]
T , where

ψ is a complex valued function of t. By the chain rule, the linearization ofR about a pulse, ψ, is a composition of the
linearizations, U , of the individual transfer functions, P . Therefore, the monodromy operator,M, is given by

M = UOC ◦ UDCF ◦ USMF2 ◦ UFA ◦ USMF1 ◦ USA. (S2)

Because eigenvalues and eigenvectors can be complex, we regard the transfer functions, U , as acting on the column
vectors of the form u = [u1, u2]

T , where each uj is a complex valued function of t.
We first derive the linearized transfer function, UFA, corresponding to the transfer function, PFA, of the fiber amplifier

about ψ. We rewrite the transfer function, PFA, of a fiber amplifier of length, LFA, in terms of ψ = (ψ1, ψ2) as

ψout = P
FAψin, (S3)



where ψout(t) = ψ(LFA, t) is obtained by solving the initial value problem
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We use a perturbation, ψε = ψ + εu, about ψ to linearize PFA. Throughout the following calculation, we ignore the
terms of order ε2 and higher. Using Eq. (S4) for both ψ and ψε, we obtain
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To simplify the first term on right hand side of Eq. (S6), we observe that

g(ψε) = g(ψ)− 2εg2(ψ)
g0Esat

∫ ∞

−∞
ψT(t)u(t)dt. (S7)
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Simplifying the second term on the right hand side of Eq. (S6), we obtain(
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Substituting Eq. (S8) and Eq. (S9) in Eq. (S6), we find that the linearized transfer function, UFA, is given by

uout = UFAuin, (S10)

where uout = u(LFA, t) is obtained by solving the linearized initial value problem

∂zu = (g(ψ)K + L + M1(ψ) + M2(ψ)) u + P(ψ)(u),

u(0, t) = uin,
(S11)
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and
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is a nonlocal operator. When we discretize the time window, [−T/2, T/2], the vector-valued functions, ψ and u, are
replaced by column vectors in the 2N-dimensional Euclidean space, R2N , which we also denote by ψ and u. Then, the
discretization of the nonlocal operator P(ψ) is given by the matrix-vector multiplication

P(ψ)u = − g2(ψ)∆t
g0Esat
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ψ
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ψTu. (S14)
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The linearized transfer function of a single mode fiber segment can be obtained by setting g0 = 0 in the derivation above.
We now derive the linearized transfer function for the saturable absorber, USA. The transfer function, PSA, of the

saturable absorber is given by
ψout = P

SA(ψin) = (1− `(ψin))ψin, (S15)

where
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. (S16)

We use the perturbation ψin,ε = ψin + εuin to linearize PSA about ψin. Here, ψin,ε and ψin satisfy Eq. (S15). Therefore,
we obtain
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Next, we use Eq. (S16) to obtain

`(ψin,ε) = `(ψin)−
2ε`2(ψin)
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Using Eq. (S18) in Eq. (S17), we finally obtain the linearized transfer function, USA, given by
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The remaining components, i.e. dispersion compensation fiber and output coupler, already have linear transfer functions.

3. ADDITIONAL NUMERICAL RESULTS

In the paper, we showed numerical results for two parameter sets, the first with a weaker saturable absorber (`0 = 0.1,
Psat = 2000 W) and the second with a stronger saturable absorber (`0 = 0.2, Psat = 50 W). We chose these two parameter
sets because with the first set the pulse is unstable and with the second set it is stable, and in both cases the stability
of the pulse is determined by the essential spectrum rather than by the discrete eigenvalues. This is because for both
parameter sets the largest magnitude of the points in the continuous spectrum always exceeds the magnitudes of the
discrete eigenvalues. In this section, we present additional numerical results showing bifurcations from an unstable to a
stable pulse by varying `0 and Psat one at a time. First, we fix `0 = 0.05 and decrease the value of Psat from 1000 W to
200 W. Then, we fix Psat = 500 W and increase `0 from 0.02 to 0.14. The other components of the laser have the same
parameter values as given in Sec. 2 of the paper. From Eq. (6), we observe that as Psat decreases, the loss near the center
of the pulse increases, since the saturation absorption effect is stronger. Similarly, as `0 increases, the loss near the center
of the pulse increases. For these parameter variations, as we vary Psat or `0, the stability of the pulse is determined
by the continuous spectrum, since the largest magnitude of the points in the continuous spectrum always exceeds the
magnitudes of the discrete eigenvalues.

In Fig. S2, we show results for Psat = 1000 W (top row), Psat = 300 W (middle row) and Psat = 200 W (bottom row). In
all three cases, we chose `0 = 0.05. In the top left panel, we show the amplitude of the pulse at the output coupler as
computed using the evolutionary method after 100 round trips (solid blue) and using the optimization method (dashed
red). The small wings on the sides of the pulse computed using the evolutionary method suggest that this pulse is
unstable. In the middle panel of the first row, we show the set of all eigenvalues of the discretized monodromy matrix,
M, (blue circles) and the continuous spectrum, σcont(M), obtained using the formula given in the paper (solid red),
both computed for the optimized pulse with Psat = 1000 W. In the right panel, we show excellent agreement between
the two spectra in a small neighbourhood of λ = 1. The largest eigenvalue on the real axis is λ = 1.0146 as obtained
using the formula for the continuous spectrum and λ = 1.0145 as obtained using the numerical method. Therefore, the
spectral method shows that the pulse is indeed unstable. To further verify this result, we propagated the perturbed
pulse, ψε = ψ + εu, through the system, where ε = 10−5 and u is the normalized eigenvector corresponding to the
eigenvalue with largest magnitude. In the top row of Fig. S3, we show the pulse, ψε, after 4000 round trips, on a linear
scale (left) and logarithmic scale (right) , together with the optimized pulse. The relative L2 error between these two
pulses is 0.9837.

In the center rows of Fig. S2 and Fig. S3, we show the corresponding results for Psat = 300 W. In this case, the wings
on the sides of the pulse obtained with the evolutionary method (solid blue) are not as pronounced. The spectral method
shows that the pulse is unstable since the largest eigenvalue on the real axis is λ = 1.0013 as obtained both using the
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formula and with the numerical method. The relative L2 error of between the evolved perturbed pulse, ψε, and the
optimized pulse is 0.7494. In the left panel of Fig. S4, we plot the largest eigenvalue as a function of Psat. We observe that
this eigenvalue remains outside the unit circle as Psat decreases from 1000 W and 300 W. Therefore, the pulse is unstable
over this range of values of Psat.
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Fig. S2. Top row: Left: Periodically stationary pulses obtained using the evolutionary approach (solid blue) and
optimization (dashed red) for Psat = 1000 W. Center and right: Eigenvalues of the discretized monodromy matrix,
M, (blue circles) and the continuous spectrum, σcont(M), computed using the formula given in paper (solid red) for
optimized pulse. Center and bottom rows: Corresponding results for Psat = 300 W and Psat = 200 W, respectively. In
all three cases, `0 = 0.05.
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Fig. S3. Top row: Left: Perturbed optimized pulse, ψε, at the output coupler after evolution over 4000 round trips (solid
blue) and the optimized pulse (dashed red) for Psat = 1000 W. Right: Corresponding results on a log scale. Center and
bottom rows: Corresponding results for Psat = 300 W and Psat = 200 W, respectively. In all three cases, `0 = 0.05.
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In the bottom rows of Fig. S2 and Fig. S3, we show the corresponding results for Psat = 200 W. In this case, the
periodically stationary pulse obtained using the evolutionary method agrees very well with the one obtained using the
optimization method. Further, the spectrum of the optimized pulse lies inside the unit circle with the largest eigenvalue
on the real axis λ = 0.99618 as obtained using the formula and λ = 0.99616 as obtained using the numerical method.
Finally, the evolved perturbed pulse, ψε, also agrees very well with the optimized pulse with the relative L2 error
3.9005× 10−4. Therefore, using these observations we conclude that when Psat = 200 the periodically stationary pulse is
stable. In conclusion, these results show that as the saturation absorption effect becomes stronger, the pulse transitions
from being unstable to being stable.

200 600 1000

1

1.01

m
ax

|
|

Numerical Spectrum
Continuous Spectrum

0.02 0.06 0.1 0.14
0.98

0.99

1

1.01

1.02

m
ax

|
|

Numerical Spectrum
Continuous Spectrum

Fig. S4. Left: A plot of the maximum real eigenvalue, max |λ|, vs. Psat showing a bifurcation from a stable to an unstable
pulse. Here, `0 = 0.05. Right: Corresponding plot in which `0 is varied and Psat = 500 W.

In Fig. S5, we present results similar to Fig. S2 for `0 = 0.02 (top row), `0 = 0.06 (middle row) and `0 = 0.08 (bottom
row). In all three cases, Psat = 500 W. In the top left panel, the small wings on the sides of the pulse computed using the
evolutionary method suggest that this pulse is unstable. The largest eigenvalue on the real axis is λ = 1.0171 as obtained
using the formula for the continuous spectrum as well as using the numerical method. Therefore, the spectral method
shows that the pulse is indeed unstable.

In the center rows of Fig. S5, we show the corresponding results for `0 = 0.06. In this case, the wings on the sides of
the pulse obtained with the evolutionary method (solid blue) are not as pronounced. The spectral method shows that
the pulse is unstable since the largest eigenvalue on the real axis is λ = 1.0045 as obtained using both the methods. Since
the maximum eigenvalue remains outside the unit circle as `0 increases from 0.02 to 0.06, the pulse is unstable over this
range of values of `0. This behavior is also shown in the right panel of Fig. S4, where we plot the largest eigenvalue as a
function of `0.

In the bottom rows of Fig. S5, we show the corresponding results for `0 = 0.08. In this case, the periodically stationary
pulse obtained using the evolutionary method agrees very well with the one obtained using the optimization method.
Further, the spectrum of the optimized pulse lies inside the unit circle with the largest eigenvalue on the real axis
λ = 0.99862 as obtained using the formula and λ = 0.99859 as obtained using the numerical method. Therefore, we
conclude that the periodically stationary pulse associated with `0 = 0.08 is stable. From the plot in the right panel of
Fig. S4, we observe that the periodically stationary pulses remain stable as `0 increases from 0.08 to 0.14. In conclusion,
these results show that as the saturation absorption effect becomes stronger, the pulse transitions from being unstable to
being stable.
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Fig. S5. Top row: Left: Periodically stationary pulses obtained using the evolutionary approach (solid blue) and
optimization (dashed red) for `0 = 0.02. Center and right: Eigenvalues of the discretized monodromy matrix, M, (blue
circles) and the continuous spectrum, σcont(M), computed using the formula given in paper (solid red) for optimized
pulse. Center and bottom rows: Corresponding results for `0 = 0.06 and `0 = 0.08, respectively. In all three cases,
Psat = 500 W.
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