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Abstract. In modern short pulse fiber lasers there is significant pulse breathing over each round4
trip of the laser loop. Consequently, averaged models cannot be used for quantitative modeling5
and design. Instead, lumped models, which are obtained by concatenating models for the various6
components of the laser, are required. Since the pulses in lumped models are periodic rather than7
stationary, their linear stability is evaluated with the aid of the monodromy operator obtained by8
linearizing the round trip operator about the periodic pulse. Conditions are given on the smoothness9
and decay of the periodic pulse which ensure that the monodromy operator exists on an appropriate10
Lebesgue function space. A formula for the essential spectrum of the monodromy operator is given11
which can be used to quantify the growth rate of continuous wave perturbations. This formula is12
established by showing that the essential spectrum of the monodromy operator equals that of an13
associated asymptotic operator. Since the asymptotic monodromy operator acts as a multiplication14
operator in the Fourier domain, it is possible to derive a formula for its spectrum. Although the15
main results are stated for a particular experimental stretched pulse laser, the analysis shows that16
they can be readily adapted to a wide range of lumped laser models.17
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1. Introduction. The purpose of this paper is to establish a formula for the21

essential spectrum of the monodromy operator for a periodic pulse in a lumped model22

of an experimental short pulse fiber laser. The physical importance of the essential23

spectrum is that it quantifies the growth rate of continuous wave perturbations seeded24

by quantum mechanical noise in the system. Such perturbations can have a major25

impact on the performance of laser-based systems. Since the advent of the soliton26

laser [26], researchers have invented several generations of short pulse fiber lasers for a27

variety of applications, including stretched-pulse (dispersion-managed) lasers [22, 32],28

similariton lasers [7, 11], and the Mamyshev oscillator [28, 31, 33]. The pulses in29

these lasers typically have durations on the order of 100 fs, peak powers on the order30

of 1-2 MW, and energy in the 1-50 nJ range. Applications of femtosecond laser31

technology include frequency comb generation, highly accurate measurement of time,32

frequency, and distance, optical waveform generation, trace-gas sensing, the search33

for exoplanets, and laser surgery [3, 8].34

Traditionally, mathematical modeling and analysis of short pulse lasers has been35

based on averaged models, in which each of the physical effects that act on the light36

pulse is averaged over one round trip of the laser loop to obtain a partial differential37

equation such as the cubic-quintic complex Ginzburg-Landau equation (CQ-CGLE)38

or the Haus master equation (see [23] for a review). This approach has been success-39

fully applied to soliton lasers for which the pulse maintains its shape as it propagates40

over each round trip. In particular, analytical and computational methods have been41

developed to find stationary pulse solutions of these equations and to analyze their42

stability using soliton perturbation theory [12, 13, 15, 21, 25]. However, as is high-43

lighted in the survey paper of Turitsyn et al. [35], averaged models cannot be used44
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2 V. SHINGLOT AND J. ZWECK

for the quantitative modeling and design of modern short pulse lasers since from one45

generation of laser to the next there has been a dramatic increase in the amount by46

which the pulse varies over each round trip.47

Instead, the computational modeling of modern short pulse lasers should be based48

on lumped models obtained by concatenating models for the various components of the49

laser. Typically short pulse lasers include an optical fiber amplifier, segments of single-50

mode fiber, a saturable absorber, a dispersion compensating element, a spectral filter,51

and an output coupler. Different laser designs are characterized by different orderings52

of the components around the loop and by different sets of physical parameters for53

each component. Depending on the modeling goal, the models of the individual54

components may be phenomenological or derived from physical laws. With a lumped55

model, the pulse changes shape as it propagates through the various components of56

the laser system, returning to the same shape once per round trip. We call such pulses57

periodically stationary to distinguish them from the stationary pulses in a soliton laser.58

The key goals for the modeling of short pulse lasers are to find parameter regions59

in which stationary or periodically stationary solutions exist, determine the stability60

of these pulses, and within the stability region to optimize the pulse parameters and61

noise performance for specific applications.62

Building on analytical work of Kaup [21] and Haus [12, 13], Menyuk [25] de-63

veloped a computational approach to the modeling of stationary pulse solutions of64

averaged models. With this method, stationary pulses are found using a root finding65

method and their linear stability is determined by computing the spectrum of the66

linearization of the governing equation about the pulse. (We recall that the spectrum67

of an operator on a function space is the union of the essential spectrum and the68

eigenvalues). In this context the essential spectrum is elementary to calculate with69

the aid of Weyl’s essential spectrum theorem [17]. While Menyuk computes the ei-70

genvalues by solving a nonlinear eigenproblem involving a matrix discretization of the71

differential operator [29, 36], analytical and computational Evans function methods72

have also been developed for the CQ-CGLE and for nonlocal equations such as the73

Haus master equation [16, 18, 19].74

Extending this approach to periodically stationary pulses in lumped laser mod-75

els is significantly more challenging. In [30], building on a method of Ambrose and76

Wilkening for computing periodic solutions of partial differential equations [2], we de-77

veloped an optimization method to find periodically stationary pulses. Each iteration78

of the optimization algorithm involves solving the equations in the model over one79

round trip of the laser. In analogy with the Floquet theory of periodic solutions of80

ordinary differential equations [34], we expect that the linear stability of the resulting81

periodic pulse will be determined by the spectrum of the monodromy operator of82

the linearization of the lumped model about the pulse. Indeed, it should be possible83

to rigorously establish such a result by generalizing the Floquet stability theory for84

parabolic partial differential equations developed by Lunardi [24]. In [30] we also85

presented a formula for the essential spectrum of the monodromy operator and ob-86

tained excellent agreement between the formula and a subset of the eigenvalues of a87

matrix discretization of the operator. This agreement was shown for a lumped model88

of an experimental stretched pulse laser of Kim et al [22]. The purpose of the current89

paper is to prove the essential spectrum formula announced in [30]. Our approach90

builds upon that in Zweck et al. [39] which dealt with the simpler case of periodically91

stationary pulse solutions of the constant-coefficient CQ-CGLE.92

Since we do not yet know how to formulate conditions to ensure that there exists93

a periodically stationary pulse solution to the lumped model, for the results in this pa-94

This manuscript is for review purposes only.



ESSENTIAL SPECTRUM IN A SHORT PULSE LASER 3

per we simply assume that the parameters in the model have been chosen so that such95

a pulse exists. This assumption is reasonable since we have solid numerical evidence96

for the existence of such pulses [30]. The first main result of the paper, Theorem 4.4,97

provides conditions on the regularity and decay of the pulse which guarantee that98

the monodromy operator exists on an appropriate L2-function space. Since it is not99

possible to calculate the essential spectrum of the monodromy operator directly, we100

instead compute the essential spectrum of an associated asymptotic monodromy op-101

erator. The asymptotic operator is defined by taking the limit as the spatial variable102

goes to infinity of the monodromy operator. Intuitively, the spectrum of the asymp-103

totic operator provides information about the growth rate of noise perturbations far104

from the pulse. The second main result, Theorem 4.6, is a formula for the essential105

spectrum of the asymptotic monodromy operator. This result is established in the106

Fourier domain, where the asymptotic operator acts as a multiplication operator on a107

space of C2-valued functions. The proof relies on a general formula we derive for the108

spectrum of a multiplication operator on L2(R,C2). The proof of this general formula109

builds on a similar well known formula in the case of scalar-valued functions [5], but110

the case of vector-valued functions involves some additional technicalities. Finally, in111

the third main result, Theorem 4.7, we establish conditions which guarantee that the112

essential spectrum of the monodromy operator equals that of the asymptotic operator.113

To keep the presentation as concrete as possible, rather than attempting to for-114

mulate an abstract definition of a general lumped model of a short pulse laser, the115

theorems are formulated and proved for the Kim laser we modeled in [30]. However,116

based on the discussion at the beginning of this introduction, we anticipate that the117

results can easily be adapted to most lumped laser models. In particular, the formula118

we derive for the essential spectrum is independent of the order of the components119

in the model. Furthermore, provided that the conditions in the remark following120

Theorem 4.7 still hold, the models for the components can be switched out for other121

models, and additional components such as a spectral filter can be added. Finally, the122

conditions on the physical parameters we impose in the main results hold generically.123

From a technical point of view there are two main challenges in extending the124

results on the constant coefficient CQ-CGLE in [39] to lumped laser models. The125

first challenge is that nonlocality of the gain saturation in the Haus master equation126

complicates the proofs of the main theorems. The physical implications of the nonlo-127

cality of the gain saturation are discussed in Section 5. The second challenge is that128

the monodromy operator is defined as a composition of solution operators for each129

component of the model, which requires adopting a different point of view, especially130

in the proof of the third main result. The combination of these two challenges ulti-131

mately means that the formula for the essential spectrum in the lumped model has a132

different character from the CQ-CGLE case.133

The paper can be outlined as follows. In Section 2, we describe the lumped model134

of the experimental stretched pulse laser of Kim et al. [22] and define the round trip135

operator, R. In Section 3, we linearize R about a periodically stationary pulse, ψ,136

to obtain the monodromy operator, M, and the associated asymptotic monodromy137

operator,M∞. In Section 4, we state the three main theorems of the paper, including138

formulating the hypotheses on ψ we need to obtain these results. We also state the139

formula we derived for the essential spectrum of M. In Section 5 we present some140

simulation results based on this formula. In Section 6, we prove the first main theorem141

on the existence and regularity properties ofM. This proof relies on the concept of an142

evolution system in semigroup theory [27] in which linear partial differential equations143

of the form ∂tu = L(t)u are regarded as ordinary differential equations for trajectories,144
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t 7→ u(t), in an infinite dimensional Banach space. The estimates in the proof of the145

technical Lemma 6.7 are relegated to Appendix A. In Section 7, we derive a formula146

for the spectrum of a general multiplication operator on L2(R,C2), and in Section 8147

we apply this formula to calculate the essential spectrum of M∞. In Sections 9 and148

10, we prove two theorems concerning the linearized differential operator, L(t), in the149

fiber amplifier and its asymptotic counterpart, L∞(t). The first result states that150

L(t) is a relatively compact perturbation of L∞(t) and the second result states that151

the semigroup of the operator L∞(t) is analytic. Finally, these results are used in152

Section 11 to prove the third main theorem that the essential spectrum of M equals153

the essential spectrum of M∞.154

2. Mathematical Model. In the left panel of Fiigure 1, we show a system155

diagram for the lumped model of the stretched pulse laser of Kim et al. [22]. A156

light pulse circulates around the loop, passing through a saturable absorber (SA),157

a segment of single mode fiber (SMF1), a fiber amplifier (FA), a second segment of158

single mode fiber (SMF2), a dispersion compensation element (DCF), and an output159

coupler (OC). After several round trips, the light circulating in the loop forms into a160

pulse that changes shape as it propagates through the different components, returning161

to the same shape each time it returns to the same position in the loop. In the right162

panel of Figure 1 we show the profile of such a periodically stationary pulse at the163

output of each component. The goal of this paper is to study the spectral stability of164

periodically stationary pulses in lumped models of fiber lasers.165

Fig. 1. Left: System diagram of the stretched pulse laser of Kim et al. [22]. Right: Instanta-
neous power of the periodically stationary pulse exiting each component of the laser.

At each position in the loop, we model the complex electric field envelope of the166

light as a function, ψ = ψ(x), of a spatial variable, x, across the pulse. The pulse is167

normalized so that |ψ(x)|2 is the instantaneous power. We assume that the function,168

ψ, is an element of the Lebesgue space, L2(R,C), of square integrable, complex-169

valued functions on R. We model each component of the laser as a transfer function,170

P : L2(R,C)→ L2(R,C), so that171

(2.1) ψout = Pψin,172

where ψin and ψout are the pulses entering and exiting the component. The com-173

ponents in the model come in two flavors: discrete and continuous. By a discrete174

component we mean one in which the action of the operator, P, on the input pulse,175

ψin, is essentially obtained in one step, for example by the application of an explicit176

formula. In our model of the Kim laser, the discrete components are the saturable177

absorber, dispersion compensation element, and output coupler. Short-pulse fiber178
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lasers sometimes also include a spectral filter that is modeled as a discrete compo-179

nent. By a continuous component, we mean one in which the action of the operator,180

P, on the input pulse, ψin, is modeled by solving a nonlinear wave equation with181

initial condition, ψin, from the input to the output of the component. In fiber lasers182

the continuous components are those that involve the propagation of a light pulse183

through a segment of nonlinear optical fiber. For our model of the Kim laser these184

are the fiber amplifier and the two segments of single mode fiber. Note that we have185

chosen to model the dispersion compensation element as a discrete component, since186

it is modeled by a constant-coefficient linear partial differential equation which has187

an analytical solution in the Fourier domain.188

With a lumped model, the propagation of a light pulse once around the laser loop189

is modeled by the round trip operator, R : L2(R,C) → L2(R,C), which is given by190

the composition of the transfer functions of all the components. For our model of the191

Kim laser, the round trip operator is given by192

(2.2) R = POC ◦ PDCF ◦ PSMF2 ◦ PFA ◦ PSMF1 ◦ PSA.193

We say that ψ0 ∈ L2(R,C) is a periodically stationary pulse if194

(2.3) R(ψ0) = eiθψ0,195

for some constant phase, θ ∈ [0, 2π). For the Kim laser, ψ0 is the pulse at the196

input to the saturable absorber. For each component, we let ψin denote the pulse197

obtained by propagating the periodically stationary pulse, ψ0, from the input to the198

SA to the input to that component. For the continuous fiber components we let ψ199

denote the pulse propagating through that fiber. In [30], we formulated the problem200

of discovering periodically stationary pulses as that of finding a zero of the Poincaré201

map functional, E : L2(R,C)× [0, 2π)→ R, given by202

(2.4) E(ψ0, θ) =
1

2

∥∥R(ψ0)− eiθψ0

∥∥2

L2(R,C)
.203

Since E ≥ 0, in practice we minimize E with respect to ψ0 and θ using a gradient-204

based iterative optimization method. In the right panel of Figure 1, we plot the205

optical power of a periodically stationary pulse obtained using this method.206

We now describe the model for the propagation of a light pulse, ψ = ψ(t, x),207

through the fiber amplifier. Here t denotes position along the fiber, with 0 ≤ t ≤ LFA,208

where LFA is the length of the fiber amplifier. We note that t is a local evolution209

variable that is only defined within the fiber amplifier. Mathematically, we regard210

x as the spatial variable across the pulse. Physically speaking, it is a fast time211

variable defined relative to a frame moving at the group velocity [38]. Our model for212

propagation in the fiber amplifier is based on the Haus master equation [12], which is a213

generalization of the nonlinear Schródinger equation that includes gain that saturates214

at high energy and is of finite bandwidth. Specifically, we model the transfer function,215

PFA, of a fiber amplifier of length, LFA, as ψout = PFAψin, where ψout = ψ(LFA, ·) is216

obtained by solving the initial value problem217

(2.5)
∂tψ =

[
g(ψ)

2

(
1 +

1

Ω2
g

∂2
x

)
− i

2βFA∂
2
x + iγ|ψ|2

]
ψ, for 0 ≤ t ≤ LFA,

ψ(0, ·) = ψin.

218

Here, g(ψ) is the saturable gain given by219

(2.6) g(ψ) =
g0

1 + E(ψ)/Esat
,220
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where g0 is the unsaturated gain, Esat is the saturation energy, and E(ψ) is the pulse221

energy, which is given by222

(2.7) E(ψ) =

∫
R
|ψ(·, x)|2dx.223

We note that the energy, and hence the saturable gain, are nonlocal in the spatial224

variable, x, and that they depend on the evolution variable, t, since ψ does. The225

finite bandwidth of the amplifier is modeled using a Gaussian filter with bandwidth,226

Ωg. In (2.5), βFA is the chromatic dispersion coefficient and γ is the nonlinear Kerr227

coefficient.228

Similarly, we model the transfer function, PSMF, of a segment of single mode fiber229

of length, LSMF, as ψout = PSMFψin, where ψout = ψ(LSMF, ·) is obtained by solving230

the initial value problem for the nonlinear Schrödinger equation given by231

(2.8)
∂tψ = − i

2βSMF∂
2
xψ + iγ|ψ|2ψ, for 0 ≤ t ≤ LSMF,

ψ(0, ·) = ψin.
232

We model the dispersion compensation element as PDCF = F−1 ◦ P̂DCF ◦F , where F233

is the Fourier transform and234

(2.9) ψ̂out(ω) = (P̂DCFψ̂in)(ω) = exp
(
iω2βDCF/2

)
ψ̂in(ω),235

with ψ̂ = F(ψ). We observe that (2.9) is the solution to the initial value problem for236

the linear equation obtained by setting γ = 0, βSMF = βDCF and LSMF = 1 in (2.8).237

We model the saturable absorber using the fast saturable loss transfer func-238

tion [37], PSA, given by239

(2.10) ψout = PSA(ψin) =

(
1− `0

1 + |ψin|2/Psat

)
ψin,240

where `0 is the unsaturated loss and Psat is the saturation power. With this model,241

ψout at x only depends on ψin at the same value of x. Finally, we model the transfer242

function, POC, of the output coupler as243

(2.11) ψout = POCψin = `OC ψin,244

where (`OC)2 is the power loss at the output coupler.245

3. Linearization of the Round Trip Operator. In this section, we derive246

the linearizations, U , about a pulse of each of the operators, P, defined in Section 2.247

By the chain rule, the linearization, M, of the round trip operator, R, about a248

periodically stationary pulse, ψ0, is equal to the composition of the linearized transfer249

functions, U , i.e.,250

(3.1) M = UOC ◦ UDCF ◦ USMF2 ◦ UFA ◦ USMF1 ◦ USA.251

In analogy with the monodromy matrix in the Floquet theory of periodic solutions of252

ODE’s [34], we callM the monodromy operator of the linearization of the round trip253

operator, R, about the periodically stationary pulse, ψ0.254

Because the linearization of the partial differential equations in the model involves255

the complex conjugate of ψ, we reformulate the model as a system of equations for256

the column vector ψ = [Re(ψ), Im(ψ)]T ∈ R2. For example, the transfer function257
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of the fiber amplifier is reformulated as the operator, PFA : L2(R,R2) → L2(R,R2),258

given by ψout = PFAψin, where ψout = ψ(LFA, ·) is obtained by solving the initial259

value problem260

(3.2)
∂tψ =

[
g(ψ)

2

(
1 + 1

Ω2
g
∂2
x

)
− β

2 J∂2
x + γ ‖ψ‖2 J

]
ψ,

ψ(0, ·) = ψin,
261

where J =

[
0 −1
1 0

]
, and ‖·‖ is the standard Euclidean norm on R2.262

The linearized transfer function, UFA : L2(R,R2) → L2(R,R2), in the fiber am-263

plifier is given by uout = UFAuin, where uout = u(LFA, ·) is obtained by solving the264

linearized initial value problem265

(3.3)
∂tu = [g(ψ)K + L + M1(ψ) + M2(ψ)]u+ P(ψ,u), for 0 ≤ t ≤ LFA

u(0, ·) = uin,
266

where267

(3.4)
K = 1

2

(
1 + 1

Ω2
g
∂2
x

)
, L = −β2 J∂2

x,

M1(ψ) = γ ‖ψ‖2 J, M2(ψ) = 2γJψψT ,
268

and269

(3.5) P(ψ,u) = − g2(ψ)
g0Esat

[(
1 + 1

Ω2
g
∂2
x

)
ψ
] ∫ ∞
−∞

ψT (x)u(x)dx270

is a nonlocal operator. The non-locality of P, which arises because the gain saturation271

depends on the total energy of the pulse, makes the analysis more challenging for272

the fiber amplifier than for a segment of single mode fiber. The linearized transfer273

function, USMF, of a segment of single mode fiber is obtained by setting g(ψ) = 0 in274

(3.3) and (3.5).275

The linearized transfer function, USA, for the saturable absorber is given by276

(3.6) uout = USA(ψin)uin =

(
1− `(ψin)− 2`2(ψin)

`0Psat
ψinψ

T
in

)
uin,277

where278

(3.7) `(ψin) =
`0

1 + ‖ψin‖
2
/Psat

.279

The remaining components, i.e. dispersion compensation fiber and output coupler,280

already have linear transfer functions, and so UDCF = PDCF and UOC = POC.281

Because eigenvalues and eigenfunctions can be complex valued, we extend the282

linearized system to act on complex-valued functions, u ∈ L2(R,C2), where283

(3.8) L2(R,C2) = {u = v + iw : v,w ∈ L2(R,R2)},284

is the space of C2-valued functions on R with the standard Hermitian inner product.285

Let T be an operator that acts on R2-valued functions. We extend T to act on286

C2-valued functions by defining T u = T u1 + iT u2. where u = u1 + iu2 with287

u1,u2 ∈ L2(R,R2). Note that the formulae above for the action of the differential288

This manuscript is for review purposes only.



8 V. SHINGLOT AND J. ZWECK

operators and transfer functions on C2-valued functions, u, are the same as for their289

action on R2-valued functions, since in both cases we only require ψ to be R2-valued.290

The only difference is our interpretation of the function spaces on which they act.291

The linear stability of the pulse ψ is determined by the spectrum of the mon-292

odromy operator, M, which is the union of the essential spectrum of M and the ei-293

genvalues ofM. In Section 4, we show that the essential spectrum of the monodromy294

operator is equal to the essential spectrum of an associated asymptotic monodromy295

operator, M∞, which is defined by296

(3.9) M∞ = UOC
∞ ◦ UDCF

∞ ◦ USMF2
∞ ◦ UFA

∞ ◦ USMF1
∞ ◦ USA

∞ ,297

where each operator, U∞, is the x-independent operator obtained by taking the limit298

as |x| → ∞ of the corresponding operator, U . In Section 4, we will impose conditions299

on the pulse that ensure that these limits exist. Under these conditions, each operator300

U∞ can be obtained by setting ψ = 0 in the corresponding formula for U . We refer301

to the operators, U∞, as asymptotic linearized transfer functions.302

4. Main Results. In this section, we first state a theorem that establishes the303

existence, uniqueness, and regularity properties of the monodromy operator,M, given304

by (3.1). Essentially the same result also holds for the asymptotic monodromy op-305

erator, M∞, given by (3.9). Then we provide an explicit formula for the essential306

spectrum of M∞. The last major result is a theorem stating that essential spectrum307

of M equals that of M∞.308

Rigorously proving the existence, uniqueness, and regularity of periodically sta-309

tionary pulse solutions, ψ, of the lumped model is challenging. Instead, for the results310

in this paper, we assume that a periodically stationary pulse, ψ, exists. This assump-311

tion is reasonable since we have strong numerical evidence for the existence of such312

pulses [30]. We do however need to impose some regularity and decay hypothesis on313

ψ to guarantee the existence of a monodromy operator for ψ and to prove the results314

about the essential spectrum. These can be stated as follows.315

Hypothesis 4.1. The pulse, ψin, about which the transfer function, (2.10), of the316

saturable absorber is linearized has the property that ψin, ∂xψin, and ∂2
xψin are317

bounded and continuous on R, and ψin decays exponentially to zero as x→ ±∞.318

Hypothesis 4.2. The pulse, ψ, about which equation (2.8) for each single mode319

fiber of length, LSMF, is linearized has the following properties:320

(a) ψ, ∂tψ are continuous in t, uniformly in x;321

(b) For each t, the function ψ(t, ·) ∈ L∞(R,C);322

(c) For each t, the weak derivative ∂xψ(t, ·) ∈ L∞(R,C);323

(d) There exist constant r > 0 so that324

(4.1) lim
x→±∞

er|x||ψ(t, x)| = 0, for all t ∈ [0, LSMF].325

Hypothesis 4.3. In the fiber amplifier of length, LFA, the pulse, ψ, about which326

(2.5) is linearized has the same properties as in Hypothesis 4.2, in addition to which327

(a) For almost all x ∈ R, ψ is C2 in t;328

(b) For almost all x ∈ R, ∂2
xψ, ∂t(∂xψ), ∂t(∂

2
xψ) are continuous in t;329

(c) There exists h ∈ L2(R,R) ∩ L∞(R,R) so that330

(4.2)
∣∣∣∂(k)
t ∂(`)

x ψ(t, x)
∣∣∣ ≤ h(x) for k = 0, 1, ` = 0, 1, 2,331
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and332

(4.3)
∣∣∂2
t ψ(t, x)

∣∣ ≤ h(x),333

for all t ∈ [0, LFA] and almost all x ∈ R.334

Remark. Property (c) of Hypothesis 4.3 holds if all the functions ∂
(k)
t ∂

(`)
x ψ are335

bounded and decay exponentially as in property (d) of Hypothesis 4.2.336

Let B(X) denote the space of bounded linear operators on a Banach space, X.337

Then we have the following theorem on the existence, unqiueness, and regularity of338

the monodromy operator.339

Theorem 4.4. Let ψ0 be a periodically stationary solution of the lumped laser340

model, i.e., a solution of (2.2). Under Hypotheses 4.1, 4.2, and 4.3, the monodromy341

operator, M, in (3.1), which is the linearization of the round trip operator, R, about342

ψ0, has the following properties:343

(a) M∈ B(L2(R,C2));344

(b) M(H2(R,C2)) ⊂ H2(R,C2);345

(c) For each v ∈ H2(R,C2), u = M(v) is the unique solution after one round346

trip of the linearization of R about ψ.347

Remark. An analgous result holds for the asymptotic monodromy operator,M∞,348

given by (3.9).349

Next, we recall the definition of the essential spectrum used in the results below.350

Definition 4.5. Let A : D(A) ⊂ X → X be a linear operator with domain,351

D(A), on a Banach space, X. We suppose that A is closed and densely defined. The352

resolvent set of A is353

(4.4) ρ(A) = {λ ∈ C : A− λ is invertible and (A− λ)−1 ∈ B(X)},354

and for each λ ∈ ρ(A), the resolvent operator is R(λ : A) = (A−λ)−1. The spectrum355

of A is σ(A) = C\ρ(A). The point spectrum of A is356

(4.5) σpt(A) = {λ ∈ C : Ker(A− λ) 6= {0}}.357

The Fredholm point spectrum of A is the subset of σpt(A) defined by358

(4.6) σFpt(A) = {λ ∈ C : A−λ is Fredholm, Ind(A−λ) = 0 and Ker(A−λ) 6= {0}},359

and the essential spectrum of A is σess(A) = σ(A)\σFpt(A).360

Remark. Although σ(A) = σpt(A) ∪ σess(A), this union may not be disjoint.361

Remark. There are several inequivalent definitions of the essential spectrum of a362

closed and densely defined operator. Here, we use the same definition of the essential363

spectrum as in Zweck et al. [39]. This definition is chosen so that σess(A) is the364

largest subset of the spectrum of A that is invariant under compact perturbations [4].365

Next, we state a formula for the essential spectrum ofM∞. This formula involves366

the total dispersion in one round trip of the laser system, which for the stretched pulse367

laser is given by βRT = βSMF1LSMF1+βFALFA+βSMF2LSMF2+βDCF. Here βFA, βSMF,368

and βDCF, are the dispersion parameters given in (2.5), (2.8), and (2.9), respectively.369
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Theorem 4.6. Suppose that the hypotheses of Theorem 4.4 hold, and that `0 6= 1370

and either (i) βRT 6= 0 or (ii) Ωg < ∞ and
∫ LFA

0
g(ψ(t))dt 6= 0. Then the essential371

spectrum of the asymptotic monodromy operator, M∞, in (3.9) is given by372

(4.7) σess(M∞) = σ(M∞) = {λ±(ω) ∈ C | ω ∈ R } ∪ {0},373

where374

(4.8) λ±(ω) = `OC(1− `0) exp

{
1

2

(
1− ω2

Ω2
g

)∫ LFA

0

g(ψ(t))dt

}
exp

{
±iω

2

2
βRT

}
.375

Remark. Equation (4.8) can be readily adapted to other lumped fiber laser mod-376

els, provided that formulae can be found for the Fourier transforms of all the asymp-377

totic linearized transfer functions, U∞, in the model. In particular, the formula is378

independent of the order in which the components are arranged around the loop.379

To prove that the essential spectrum of M equals that of M∞ we require that380

the linearization of the equation modeling the single mode fiber segments (SMF1381

and SMF2) generates an analytic semigroup. To do so, we add an additional spectral382

filtering term to the nonlinear Schrödinger equation, so that light propagation in these383

fibers is modeled by384

(4.9) ∂tψ = − i
2
β∂2

xψ + iγ|ψ|2ψ + ε∂2
xψ,385

where the parameter, ε, is required to be positive, but can be arbitrarily small. Pro-386

vided that ε > 0, the semigroup for the linearized equation is analytic (see Section 10).387

In the frequency domain the additional term corresponds to388

(4.10) ∂tψ̂(ω) = −εω2ψ̂(ω),389

which models a frequency-dependent loss. The addition of this term is physically390

reasonable since the loss in optical fiber is wavelength dependent with a minimum at391

about 1550 nm [1].392

Theorem 4.7. Suppose that the hypotheses of Theorem 4.4 hold, and that in the393

fiber amplifier 0 < Ωg <∞ and (g0, β) 6= (0, 0). Furthermore, suppose that the single394

mode fiber segments are modeled using (4.9) with ε > 0. Then the essential spectrum395

of the monodromy operator, M, in (3.1) is given by396

(4.11) σess(M) = σess(M∞).397

Remark. For simplicity we state and prove this theorem for the lumped model398

of the stretched pulse laser discussed in Section 2. However, (4.11) also holds for a399

wide range of lumped models of fiber lasers. Specifically, as we will see in the proof,400

in addition to the hypotheses made about the fiber segments, we just require that the401

linearizations, U and U∞, of the transfer operators of the input-output devices in the402

model satisfy403

(4.12) U ,U∞ ∈ B(L2(R,C2)) ∩ B(H2(R,C2)),404

and that an analogue of Theorem 11.2 below holds for each of them.405
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5. Simulation Results. In this section we use formula (4.8) for the essential406

spectrum to provide some insights into the roles that the saturable absorber and407

the saturation of the gain in the fiber amplifier play in stabilizing the periodically408

stationary pulse circulating in the laser. Further details can be found in [30].409

Although we are not modeling it here, in addition to its role in pulse amplification,410

the fiber amplifier adds spontaneous emission noise to the system [9], which—among411

other effects such as random timing and phase shifts of the pulse—manifests itself as412

a random superposition of continuous wave perturbations. If the essential spectrum,413

σess(M), lies inside the unit disc in C, then these continuous wave perturbations414

decay, which helps ensure pulse stability.415

From (2.6) we see that the gain in the fiber amplifier simply depends on the416

pulse energy. Consequently, each round trip the noise entering the fiber amplifier417

experiences the same gain as does the pulse. Furthermore, as the pulse propagates418

through the fiber amplifier, spontaneous emmission noise that is proportional to the419

gain is added to the system. The saturation of the gain therefore plays a critical role420

in stabilizing the system, since the gain decreases as the pulse energy increases.421

On the other hand, with the model we use for the saturable absorber the response422

is instantaneous, and is given by423

(5.1) ψout(x) =

(
1− `0

1 + |ψin(x)|2/Psat

)
ψin(x),424

so that the value of the output at x only depends on the input at that x. Therefore,425

far from the pulse, where ψin ≈ 0, the loss is `0, whereas in the center of the pulse426

the loss saturates and is less than `0. Because the loss saturates at high power, the427

system can operate so that the gain in the fiber amplifier and the loss in the saturable428

absorber balance for the pulse, while simultaneously loss exceeds gain far from the429

pulse. Consequently, noise far from the pulse can be suppressed relative to the peak430

power of the pulse. The larger `0 is and/or the smaller Psat is in (5.1), the more the431

saturable absorber suppresses noise far from the pulse, and the more stable the pulse432

is to noise perturbations. Already in the 1975, Haus [12] identified the need for a433

saturable absorber to suppress the growth of continuous waves, while balancing gain434

and loss for the pulse. Formula (4.8) for the essential spectrum of the monodromy435

operator quantifies this effect for the first time in a lumped model of a fiber laser.436

To ensure that a continuous wave perturbation with frequency ω does not grow,437

we require that |λ±(ω)| ≤ 1, which, because of the Gaussian factor in (4.8), holds for438

all ω provided that439

(5.2) (`OC)2(1− `0)2GFA
Tot ≤ 1, where GFA

Tot = exp

{∫ LFA

0

g(ψ(t)) dt

}
,440

is approximately equal to the energy gain in the fiber amplifier. That is, far from441

the pulse the loss experienced by continuous waves must exceed the gain. Although442

(5.2) looks very simple, the essential spectrum can depend in a complex way on the443

interplay between all the system parameters, since they all influence the shape of the444

pulse and hence the total gain, GFA
Tot, in the fiber amplifier.445

For the simulation results we present here, we chose the parameters in the model446

to be similar to those in the experimental stretched pulse laser of Kim [22]. The447

parameters for the saturable absorber are given below. The saturable absorber is448

followed by a segment of single mode fiber, SMF1, modeled by (2.8), with γ = 2 ×449

10−3 (Wm)−1, βSMF1 = 10 kfs2/m, (1 kfs2 = 10−27 s2), and LSMF1 = 0.32 m, a fiber450
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Fig. 2. Top row: Left: Periodically stationary pulse for Psat = 200 W. Center and right:
Essential spectrum, σess(M), of the monodromy operator associated with the pulse on the left.
Bottom row: Corresponding results for Psat = 1000 W. In both cases, `0 = 0.05.

0.02 0.08 0.14
0.98

1

1.02

m
ax

|
|

200 600 1000
P

sat
 [W]

1

1.01

m
ax

|
|

Fig. 3. Left: A plot of the maximum real eigenvalue, max |λ|, vs. `0 when Psat = 500 W.
Right: Corresponding plot in which Psat is varied when `0 = 0.05.

amplifier, modeled by (2.5), with g0 = 6m−1, Esat = 200 pJ, Ωg = 50 THz, γ =451

4.4× 10−3 (Wm)−1, βFA = 25 kfs2/m, and LFA = 0.22 m, a second segment of single452

mode fiber, SMF2, with the same parameters as SMF1, but with LSMF2 = 0.11 m,453

a dispersion compensation element with βDCF = −1 kfs2, and a 50% output coupler,454

modeled by (2.11) with `OC =
√

0.5.455

In the top row of Fig. 2, we show the results of simulations performed when Psat =456

200 W and `0 = 0.05. The pulse, ψ0, in the left panel was obtained by numerically457

minimizing the L2-error between R(ψ0) and eiθψ0, over all possible choices of θ [30].458

In the center panel we plot the essential spectrum for the pulse in the left panel. We459
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observe that σess(M) consists of a pair of counter-rotating spirals whose amplitudes460

rapidly decay to zero. Since the peak power of the pulse entering the saturable461

absorber is comparable to Psat, the saturation of the loss is significant, which helps462

to stabilize the pulse. In the bottom row of Fig. 2, we show the corresponding results463

with Psat = 1000 W. In this case the saturation of the loss is much weaker, and as we464

see in the far right panel, there is a range of low frequencies, ω, for which |λ±(ω)| > 1465

and continuous wave perturbations grow.466

In the left panel of Fig. 3, we plot the largest value of |λ| as a function of `0 when467

Psat = 500 W. Since this value remains outside the unit circle as `0 increases from468

0.02 to 0.06, the pulse is unstable over this range. It is only once the unsaturated469

gain is sufficiently large that condition (5.2) holds and the essential spectrum is stable.470

Similarly, in the right panel, we show the largest value of |λ| as a function of Psat when471

`0 = 0.05. Here, the pulse is unstable for Psat > 300 W, since then the saturation472

effect is too weak to ensure that the loss experienced by the noise is sufficiently greater473

than that experienced by the pulse.474

6. Existence of the monodromy operator. To prove Theorem 4.4 we use the475

fact that the monodromy operator, M, is the composition of the linearized transfer476

functions, U , of each component of the laser. Therefore, we just need to establish477

the result for each of the operators, U . For the single mode fiber segments and the478

dispersion compensation element, the result is a special case of the corresponding479

result for the CQ-CGL equation given in Zweck et al. [39, Theorem 4.1]. For the fast480

saturable absorber and the fiber amplifier, the results are given in Proposition 6.1 and481

Theorem 6.4 below.482

If X is a Banach space, we let ‖ · ‖X denote the norm on X. When the context is483

clear, we sometimes omit the subscript X and simply write ‖ · ‖.484

Proposition 6.1. Suppose that Hypothesis 4.1 holds. Then the transfer function,485

USA, given by (3.6) satisfies the first two conclusions of Theorem 4.4.486

Proof. To establish the first conclusion, we use the Cauchy-Schwarz inequality487

and the fact that `(ψin) ≤ `0 (see (3.6)) to obtain488

(6.1)

‖uout‖L2(R,C2) ≤ (1 + `(ψin)) ‖uin‖L2(R,C2) +
2`2(ψin)

`0Psat
|ψTinuin| ‖ψin‖L2(R,C2)

≤
(

1 + `0 +
2`0
Psat

‖ψin‖
2
L2(R,C2)

)
‖uin‖L2(R,C2) .

489

By Hypothesis 4.1, ψin ∈ L2(R,C2). Therefore, USA ∈ B(L2(R,C2)). Similarly, to490

establish the second conclusion, we find that491

(6.2) ‖uout‖H2(R,C2) ≤
(

1 + `0 +
2`0
Psat

‖ψin‖
2
H2(R,C2)

)
‖uin‖H2(R,C2) .492

By Hypothesis 4.1, ψin ∈ H2(R,C2). Therefore, USA ∈ B(H2(R,C2)).493

Next, we establish the existence of an evolution family for the linearization (3.3)494

of the Haus master equation (2.5), which models propagation in a fiber amplifier of495

length LFA. Let t ∈ [0, LFA] be local time within the fiber amplifier and let s ∈ [0, LFA].496

We study solutions, u : [s, LFA]→ H2(R,C2), of497

(6.3)
∂tu = LFA(t)u, for 0 ≤ s < t ≤ LFA,

u(s) = v,
498
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where v ∈ H2(R,C2). Here, LFA(t) is the family of operators on L2(R,C2) given by499

reformulating (3.3) as500

(6.4) LFA(t) = B(t)∂2
x + M̃(t),501

where, setting g(t) := g(ψ(t)),502

(6.5) B(t) =
g(t)

2Ω2
g

I− β

2
J and M̃(t)u = M̃1(t)u− φ(t)〈ψ(t),u〉.503

Here, 〈 · , · 〉 is the L2-inner product on L2(R,C2) and504

(6.6) M̃1(t) =
g(t)

2
I + γ|ψ|2J + 2γJψψT and φ(t) =

g2(t)

g0Esat

{(
1 +

∂2
x

Ω2
g

)
ψ

}
.505

Definition 6.2 ([27, 5.5.3]). A two parameter family of bounded linear opera-506

tors, U(t, s), 0 ≤ s ≤ t ≤ T , on X is called an evolution system if507

(i) U(s, s) = I, and U(t, r) ◦ U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T , and508

(ii) (t, s)→ U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .509

Definition 6.3. Let A = A(t, x) : [0,∞)×R→ C2×2 be a bounded matrix-valued510

function. We define511

(6.7) ‖A‖∞ = sup
(t,x)

‖A(t, x)‖C2×2 .512

Theorem 6.4. Assume that Hypothesis 4.3 holds in the fiber amplifier. Then513

there exists a unique evolution operator, UFA(t, s) ∈ B(L2(R,C2)), for 0 ≤ s ≤ t ≤514

LFA, where LFA is the length of the fiber amplifier, such that515

1.
∥∥UFA(t, s)

∥∥
B(L2(R,C2))

≤ exp
[∥∥∥M̃∥∥∥

∞
(t− s)

]
,516

2. UFA(t, s)(H2(R,C2)) ⊂ H2(R,C2),517

3. For each s, UFA(·, s) is strongly continuous in that for all v ∈ L2(R,C2), the518

mapping t 7→ UFA(t, s)v is continuous, and519

4. For each v ∈ H2(R,C2), the function u(t) = UFA(t, s)v is the unique solution520

of the initial value problem (6.3) for which u ∈ C([s, LFA), H2(R,C2)) and521

u ∈ C1((s, LFA), L2(R,C2)).522

Proof. The result follows from [27, Theorems 5.2.3 and 5.4.8]. Lemmas 6.5 to 6.7523

below guarantee that the assumptions of these theorems hold.524

Lemma 6.5. The linear operator, B(t)∂2
x : H2(R,C2) ⊂ L2(R,C2) → L2(R,C2)525

is closed with domain H2(R,C2). Furthermore, (0,∞) ⊂ ρ(B(t)∂2
x) and the resolvent526

operator satisfies527

(6.8)
∥∥R(λ : B(t)∂2

x)
∥∥
B(L2(R,C2))

≤ 1

λ
, for all λ > 0.528

Consequently, B(t)∂2
x is the infinitesimal generator of a C0-semigroup on L2(R,C2).529

Proof. Equation (6.8) follows immediately from [39, Lemma 4.1]. The proof is530

completed by invoking the Hille-Yosida Theorem [27, 1.3.1].531

Lemma 6.6. Assume that Hypothesis 4.3 is met. Then there exists K > 0 such532

that for all t ∈ [0, LFA]533

(6.9)
∥∥∥M̃(t)

∥∥∥
B(L2(R,C2))

< K.534
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Proof. We have535

(6.10)
∥∥∥M̃(t)u

∥∥∥
L2(R,C2)

≤
∥∥∥M̃1

∥∥∥
∞
‖u‖L2(R,C2) + ‖φ(t)〈ψ(t),u〉‖L2(R,C2) .536

Let ‖A‖F denote the Frobenius norm of a matrix A. We estimate the first term in537

(6.10) by538 ∥∥∥M̃1

∥∥∥2

∞
≤ sup

(t,x)∈[0,LFA]×R

∥∥∥M̃1(t, x)
∥∥∥2

F
539

= sup
(t,x)∈[0,LFA]×R

2∑
i,j=1

∣∣∣∣g(t)

2
Iij + γ|ψ(t, x)|2Jij + 2γ

[
Jψ(t, x)ψT (t, x)

]
ij

∣∣∣∣2540

≤ sup
(t,x)∈[0,LFA]×R

{
g2(t)

4

2∑
i,j=1

|Iij |2 + γ2|ψ(t, x)|4
2∑

i,j=1

|Jij |2541

+ 4γ2
2∑

i,j=1

∣∣∣∣[Jψ(t, x)ψT (t, x)
]
ij

∣∣∣∣2 + γg(t)|ψ(t, x)|2
2∑

i,j=1

|Iij ||Jij |542

+ 4γ2|ψ(t, x)|2
2∑

i,j=1

|Jij |
∣∣∣∣[Jψ(t, x)ψT (t, x)

]
ij

∣∣∣∣543

+ 2γg(t)

2∑
i,j=1

|Iij |
∣∣∣∣[Jψ(t, x)ψT (t, x)

]
ij

∣∣∣∣ }544

= sup
(t,x)∈[0,LFA]×R

{
g2(t)

2
+ 10γ2|ψ(t, x)|4 + 4γg(t)|Re(ψ(t, x)) Im(ψ(t, x))|

}
545

≤g
2
0

2
+ sup

(t,x)∈[0,LFA]×R

{
10γ2|ψ(t, x)|4 + 4γg0|Re(ψ(t, x)) Im(ψ(t, x))|

}
,546

547

which is finite by Hypothesis 4.3.548

As for the second term in (6.10), by the Cauchy-Schwarz inequality,549

‖φ(t)〈ψ(t),u〉‖L2(R,C2) ≤ ‖φ(t)‖L2(R,C2) ‖ψ(t)‖L2(R,C2) ‖u‖L2(R,C2)550

≤ g0

Esat

∥∥∥∥ψ(t) +
∂2
xψ(t)

Ω2
g

∥∥∥∥
L2(R,C2)

‖ψ(t)‖L2(R,C2) ‖u‖L2(R,C2)551

≤ max

{
1,

1

Ω2
g

}
g0

Esat
‖ψ(t)‖2H2(R,C2) ‖u‖L2(R,C2) .552

553

The result now follows, since ‖ψ(t)‖H2(R,C2) <∞ by Hypothesis 4.3.554

Combining [27, Theorem 5.2.3] and Lemmas 6.5 and 6.6, we conclude that555

{LFA(t)}t∈[0,LFA] is a stable family of infinitesimal generators of C0-semigroups on556

L2(R,C2). This is the first assumption in [27, Theorem 5.4.8]. The following Lemma557

establishes the second assumption.558

Lemma 6.7. Suppose that Hypothesis 4.3 holds. Then for each v ∈ H2(R,C2),559

we have that F (·) = LFA(·)v : (0, LFA)→ L2(R,C2) is C1.560

Proof. We show that F is differentiable with F ′(t) = ∂tLFA(t)v. The proof that561

F ′ is continuous is similar. By Hypothesis 4.3, LFA(t)v, ∂tLFA(t)v ∈ L2(R,C2). In562
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Appendix A, we show that563

(6.11)

‖F (t+ h)− F (t)− hF ′(t)‖L2(R,C2)

≤
{

2
√

2hG1(h) + 2
√

2hG2(h) +
g0C

Esat
h ‖ψ(t+ h)‖H2(R,C2)G3(h)

+
2g2

0C

E2
sat

h2 sup
τ∈(t,t+h)

|E′(τ)| ‖ψ(τ)‖H2(R,C2) ‖∂tψ(t)‖H2(R,C2)

+
2g0C

Esat
h2 sup

τ∈(t,t+h)

‖∂tψ(τ)‖H2(R,C2) ‖∂tψ(t)‖H2(R,C2)

+ hG4(h) ‖ψ(t)‖H2(R,C2)

}
‖v‖H2(R,C2) ,

564

where565

(6.12)

G1(h) = sup
τ∈(t,t+h)

‖(∂tB)(τ)− (∂tB)(t)‖C2×2 ,

G2(h) = sup
(τ,x)∈(t,t+h)×R

∥∥∥(∂tM̃1)(τ, x)− (∂tM̃1)(t, x)
∥∥∥
C2×2

,

G3(h) = sup
τ∈(t,t+h)

‖(∂tψ)(τ)− (∂tψ)(t)‖H2(R,C2) ,

G4(h) = sup
τ∈(t,t+h)

‖(∂tφ)(τ)− (∂tφ)(t)‖L2(R,C2) .

566

Next, we observe that ∃C > 0 such that567

(6.13) G1(h) = C sup
τ∈(t,t+h)

∣∣g2(τ)E′(τ)− g2(t)E′(t)
∣∣.568

By Hypothesis 4.3 and the differentiation under the integral sign theorem [14], g and569

E′ are C1 which implies that G1(h) → 0 as h → 0. Also by Hypothesis 4.3, and570

applying the Lebesgue dominated convergence theorem as needed, we conclude that571

Gj(h)→ 0 as h→ 0 for j = 2, 3, 4. Consequently,572

(6.14) ‖F (t+ h)− F (t)− hF ′(t)‖L2(R,C2) ≤ hG(h),573

where limh→0G(h) = 0. Hence, F is differentiable as required.574

7. Spectrum of a Multiplication Operator on L2(R,C2). The essential575

spectrum of the asymptotic linearized operator, M∞, is equal to the spectrum of576

its Fourier transform, M̂∞, which is a multiplication operator on L2(R,C2). In this577

section, we derive a formula for the spectrum of a general class of multiplication578

operators on L2(R,C2). The proof is based on that of a similar well-known formula579

for multiplication operators on L2(R,C) [5, Prop. 4.2].580

Definition 7.1. Let Q : R → C2×2. The multiplication operator, MQ, induced581

on L2(R,C2) by Q is defined by582

(MQw)(x) := Q(x)w(x) for all w in the domain(7.1)583

D(MQ) = {w ∈ L2(R,C2) : Qw ∈ L2(R,C2)}.(7.2)584585

Proposition 7.2. If Q ∈ L∞(R,C2×2), thenMQ is everywhere defined, bounded586

and closed, with587

(7.3) ‖MQ‖B(L2(R,C2))) ≤ ‖Q‖∞ ,588
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where589

(7.4) ‖Q‖∞ := sup
x∈R
‖Q(x)‖C2×2 .590

We now state the main result of this section.591

Theorem 7.3. Let Q ∈ L∞(R,C2×2) ∩ C0(R,C2×2). If ‖Q(x)‖C2×2 → 0 as592

x→ ±∞, then the spectrum of MQ is given by593

(7.5)
σ(MQ) = {λ ∈ C : ∃x ∈ R such that det(λI−Q(x)) = 0} ∪ {0}

= {λ ∈ C : ∃x ∈ R such that λ ∈ σ(Q(x))} ∪ {0}.
594

The proof of Theorem 7.3 relies on several preliminary results. First, Proposi-595

tion 7.2 can be improved upon as follows.596

Proposition 7.4. Suppose that Q ∈ C0(R,C2×2). Then, the operator MQ is597

bounded if and only if Q is bounded. In this case,598

(7.6) ‖MQ‖B(L2(R,C2))) = ‖Q‖∞ .599

The proof of this proposition relies on the following well-known result on the600

Dirac delta distribution.601

Lemma 7.5. Let g ∈ L1(R) with
∫
R g(x)dx = 1. Set gs,δ(x) = 1

δ g
(
x−s
δ

)
, where602

δ > 0. Then limδ→0

∫
R φ(x)gs,δ(x)dx = φ(s) for all φ ∈ L∞(R) ∩ C0(R). That is, for603

every ε > 0, there exists δ̃ = δ̃(ε, φ) such that604

(7.7) φ(s)− ε ≤
∫
R
φ(x)gs,δ(x)dx ≤ φ(s) + ε, whenever δ ≤ δ̃.605

Proof of Proposition 7.4. If Q is bounded, then MQ is bounded by Proposi-606

tion 7.2. Conversely, suppose MQ is bounded. Then,607

(7.8) ‖MQ‖B(L2(R,C2)) ≥ ‖MQw‖L2(R,C2) ,608

for all w ∈ L2(R,C2) with ‖w‖L2(R,C2) = 1. Fix s ∈ R and choose w(x) = ws,δ(x) =609 √
gs,δ(x)v(x), for some vector v(x) ∈ C2 and where gs,δ is as in Proposition 7.5. If610

we require that ‖v(x)‖C2 = 1 for all x, then ‖w‖L2(R,C2) = 1 holds. Furthermore, for611

each x, we can chose v(x) so that612

(7.9) ‖Q(x)v(x)‖C2 = ‖Q(x)‖C2×2 .613

Then614

‖MQ‖2B(L2(R,C2)) ≥ ‖MQws,δ‖2L2(R,C2) =

∫
R
‖Q(x)‖2C2×2 gs,δ(x)dx.615

Let ε > 0. Choosing φ(x) = ‖Q(x)‖2C2×2 in Proposition 7.5 we find that there exists616

δ̃ = δ̃(ε, s) > 0 so that for all δ < δ̃617

(7.10) ‖MQ‖2B(L2(R,C2)) ≥
∫
R
‖Q(x)‖2C2×2 gs,δ(x)dx > ‖Q(s)‖2C2×2 − ε.618

Therefore,619

(7.11) ‖Q‖∞ = sup
s∈R
‖Q(s)‖C2×2 ≤ ‖MQ‖B(L2(R,C2)) ,620

and so Q is bounded, and (7.6) holds by Proposition 7.2.621
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18 V. SHINGLOT AND J. ZWECK

Next, in Proposition 7.6 and Proposition 7.7 we state some properties of a matrix622

valued function, Q ∈ L∞(R,C2×2), which are used in the proof of Proposition 7.10623

below.624

Proposition 7.6. Let Q : R→ C2×2 be continuous with ‖Q‖∞ <∞ and suppose625

that 0 /∈ Im(detQ). Then Q−1 : R→ C2×2 is continuous and
∥∥Q−1

∥∥
∞ <∞.626

Proof. Since, 0 /∈ Im(det Q), there exists ε > 0 such that |det Q(x)| > ε, for all627

x ∈ R. So,628

Q−1(x) =
1

detQ(x)

[
Q22(x) −Q12(x)
−Q21(x) Q11(x)

]
629

exists and is continuous. Furthermore,630

(7.12)
∥∥Q−1(x)

∥∥2

C2×2 ≤
∥∥Q−1(x)

∥∥2

F
=
‖Q(x)‖2F
|det Q(x)|2

≤
4 ‖Q(x)‖2C2×2

|det Q(x)|2
≤ 4

ε2
‖Q‖2∞ .631

Proposition 7.7. Let Q ∈ C2×2 be a matrix. Then there exists a vector u ∈ C2632

with ‖u‖C2 = 1 so that633

(7.13) ‖Qu‖2C2 ≤ |detQ|.634

Remark. Geometrically Q changes areas by a factor of |det Q|. This result says635

there exists a direction u in which Q changes lengths by at most
√
|det Q|.636

Proof. The following self evident claims leads to the proof of (7.13).637

Claim 7.8. Let Q = UR be the QR decomposition of Q, where U is unitary and638

R is upper triangular. Suppose (7.13) holds for R, then it also holds for Q.639

Claim 7.9. Suppose Q = αQ̃ for some α ∈ C and that the (7.13) holds for Q̃.640

Then (7.13) also holds for Q.641

By Claim 7.8 it suffices to establish (7.13) for R =

[
a b
0 d

]
.642

Case I: If a = 0, let u = (1, 0). Then Ru = (0, 0). Hence, ‖Ru‖2C2 = 0 = |det R|,643

and so (7.13) holds.644

Case II: If a 6= 0, then by Claim 7.9 we just need to show that (7.13) holds for ma-645

trices R̃ of the form R̃ =

[
1 b
0 d

]
. If |d| ≥ 1, we choose u = (1, 0) to obtain

∥∥∥R̃u∥∥∥2

C2
=646

1 ≤ |d| = |det R̃|. Finally, if |d| < 1, choosing u =
(
−b/

√
1 + |b|2, 1/

√
1 + |b|2

)
we647

obtain R̃u = (0, d)/
√

1 + |b|2. Hence,
∥∥∥R̃u∥∥∥2

C2
= |d|2/(1 + |b|2) ≤ |d|2 ≤ |d| =648

|det R̃|.649

Proposition 7.10. Let Q : R→ C2×2 be continuous with ‖Q‖∞ <∞. Then the650

operator MQ has a bounded inverse if and only if 0 /∈ Im(detQ). In that case, Q has651

a bounded inverse, Q−1, and652

M−1
Q = MQ−1 .653
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Proof. Suppose 0 /∈ Im(detQ). By Proposition 7.6,
∥∥Q−1

∥∥
∞ ≤ ∞. Hence, by654

Proposition 7.4, M−1
Q is bounded and655

(7.14)
∥∥∥M−1

Q

∥∥∥
B(L2(R,C2))

=
∥∥Q−1

∥∥
∞ ≤ ∞.656

Conversely, suppose that MQ has a bounded inverse. Then for all w ∈ L2(R,C2),657

(7.15) γ :=
1∥∥∥M−1

Q

∥∥∥
B(L2(R,C2))

≤
‖MQw‖L2(R,C2)

‖w‖L2(R,C2)

.658

We will show that for all x ∈ R659

(7.16) |detQ(x)| > γ2

8
,660

and hence 0 /∈ Im(detQ).661

Assume for the sake of contradiction that there exists s ∈ R such that662

(7.17) |detQ(s)| ≤ γ2

8
.663

Let w(x) = ws,δ(x) =
√
gs,δ(x)u(x), where gs,δ(x) is as in Proposition 7.5 and, using664

Proposition 7.7, for each x ∈ R, u(x) ∈ C2 is chosen so that ‖u(x)‖C2 = 1 and665

(7.18) ‖Q(x)u(x)‖2C2 ≤ |detQ(x)| .666

Let ε > 0. By (7.18) and Proposition 7.5 there exists δ > 0 so that667

‖MQws,δ‖2L2(R,C2) =

∫
R

∥∥∥∥Q(x)
√
gs,δ(x)u(x)

∥∥∥∥2

C2

dx ≤
∫
R
gs,δ(x) |detQ(x)| dx668

< |detQ(x)|+ ε <
γ2

8
+ ε.669

670

Choosing ε = γ2

8 and applying our assumption (7.17) we find that671

(7.19) ‖MQws,δ‖L2(R,C2) ≤
γ

2
,672

which is a contradiction to (7.15). Therefore, for all x ∈ R |detQ(x)| > γ2

8 . Hence,673

0 /∈ Im(detQ). Finally, using (7.6), we conclude that
∥∥Q−1

∥∥
∞ ≤ ∞.674

Proof of Theorem 7.3. By Proposition 7.10675

λ ∈ ρ(MQ) ⇐⇒ Mλ−Q has a bounded inverse676

⇐⇒ 0 /∈ Im(det(λI−Q))677

⇐⇒ ∃ε > 0 such that ∀x ∈ R |det(λI−Q(x))| ≥ ε.678679

Therefore,680

(7.20)
λ ∈ σ(MQ) ⇐⇒ λ /∈ ρ(MQ)

⇐⇒ ∀ε > 0 ∃x ∈ R such that |det(λI−Q(x))| < ε.
681
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Let682

(7.21) σ̃(MQ) = {λ ∈ C : ∃x ∈ R such that det(λI−Q(x)) = 0}.683

Then σ̃(MQ) ⊆ σ(MQ). Let λ ∈ σ(MQ)\σ̃(MQ). To complete the proof, we must684

show λ = 0. Choosing ε = 1/n in (7.20),685

(7.22) ∃xn ∈ R such that det(λI−Q(xn)) ≤ 1/n.686

Suppose that the sequence {xn}∞n=1 is bounded. Then there exists a convergent687

subsequence xnk → x∗. Since, we are assuming that Q is continuous,688

(7.23) det(λI−Q(x∗)) = lim
n→∞

det(λI−Q(xn)) = 0.689

Therefore, λ ∈ σ̃(MQ), which is a contradiction. Hence, xn is not bounded and so690

(7.24) ∃xn →∞ such that ‖Q(xn)‖C2×2 → 0.691

Let an = det(λI−Q(xn)) = λ2 − trace(Q(xn))λ+ det(Q(xn)). Therefore,692

(7.25) λ =
1

2

[
trace(Q(xn))±

√
trace2(Q(xn))− 4(det(Q(xn))− an)

]
.693

Now, by (7.22), an → 0 and by assumption ‖Q(xn)‖F → 0 as n → ∞. Therefore,694

λ = 0 must hold.695

8. The Essential Spectrum of the Asymptotic Monodromy Operator.696

In this section we prove Theorem 4.6 which gives the formula for the essential spectrum697

of M∞. The proof relies on the following two results.698

Lemma 8.1. Let A(a, b) =

[
a −b
b a

]
. Then699

(8.1) eA(a,b) = eaR(b),700

where R(b) =

[
cos b − sin b
sin b cos b

]
is a rotation matrix.701

Proof. Diagonalize A(a, b) and use Euler’s formula.702

Next, working with Definition 4.5, we have the following result.703

Proposition 8.2. Let M∞ : L2(R,C2) → L2(R,C2) be the asymptotic mon-704

odromy operator given by (3.9). Then705

(8.2) σess(M∞) = σess(M̂∞),706

where707

(8.3) M̂∞ = F ◦M∞ ◦ F−1.708

Here, F : L2(R,C2)→ L2(R,C2) is the Fourier transform.709

Proof of Theorem 4.6. By Proposition 8.2 it suffices to compute σess(M̂∞). First,710

we show that711

(8.4) M̂∞ = ÛOC
∞ ◦ ÛDCF

∞ ◦ ÛSMF2
∞ ◦ ÛFA

∞ ◦ ÛSMF1
∞ ◦ ÛSA

∞712
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is a multiplication operator by showing that each transfer function Û∞ is a multiplica-713

tion operator. Here, for each laser component the transfer function Û∞ is the Fourier714

transform of the asymptotic linearized transfer function, U∞, given in Section 3. We715

then use Theorem 7.3 to obtain σess(M̂∞).716

For the saturable absorber,717

(8.5) (ÛSA
∞ ûin)(ω) = (1− `0)ûin(ω),718

and, as in the derivation of (2.9), for the dispersion compensation element,719

(8.6) (ÛDCF
∞ ûin)(ω) = exp

{
A

(
0,
ω2

2
βDCF

)}
ûin(ω).720

For the two single mode fiber segments, a similar formula holds for each solution721

operator, ÛSMF
∞ , but with βDCF replaced by βSMFLSMF. For the fiber amplifier,722

(8.7) (ÛFA
∞ ûin)(ω) = exp

{
A

(
1

2

(
1− ω2

Ω2
g

)∫ LFA

0

g(t)dt,
ω2

2
βFALFA

)}
ûin(ω).723

Finally, ÛOC
∞ = POC, which is given by (2.11).724

Combining these formulae, applying Lemma 8.1, and using the fact that R(θ1) ◦725

R(θ2) = R(θ1 + θ2) we have726

(8.8) (M̂∞ûin)(ω) = M̂∞(ω)ûin(ω),727

where728

(8.9) M̂∞(ω) =
(1− `0)√

2
exp

{
1

2

(
1− ω2

Ω2
g

)∫ LFA

0

g(t)dt

}
R

(
ω2

2
βRT

)
.729

Using Theorem 7.3 with Q = M̂∞(ω), we obtain730

(8.10)

σ(M∞) = {λ±(ω) ∈ C | ω ∈ R } ∪ {0},

λ±(ω) =
(1− `0)√

2
exp

{
1

2

(
1− ω2

Ω2
g

)∫ LFA

0

g(t)dt

}
exp

{
±iω

2

2
βRT

}
.

731

Finally we show that σpt(M∞) = φ, from which it follows that σess(M∞) = σ(M∞).732

For this we recall that the point spectrum of a multiplication operator such as M̂∞733

is given by [5]734

(8.11) σpt(M̂∞) =
{
λ ∈ C : µ

{
ω ∈ R : det[M̂∞(ω)− λ] = 0

}
> 0
}
,735

where µ denotes Lebesgue measure on R. Therefore, to show that σpt(M̂∞) = φ, we736

must show for all λ ∈ C that the set737

(8.12) Sλ = {ω ∈ R : λ+(ω) = λ or λ−(ω) = λ},738

has measure zero. We observe that λ± : R → C generically parametrizes a pair of739

counter-rotating spirals. Invoking the assumptions of the theorem, since `0 6= 1, and740

either βRT 6= 0 or Ωg < ∞ and
∫ LFA

0
g(t)dt 6= 0, the mappings λ± : R → C are at741

most countable-to-one, which implies that Sλ has measure zero for all λ ∈ C.742
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9. Relative compactness for the linearized differential operators in the743

fiber amplifier. In this section we show that the linearized differential operator744

in the fiber amplifier, L(t), is a relatively compact perturbation of the asymptotic745

linearized differential operator, L∞(t), provided that the nonlinear pulse satisfies some746

reasonable weak regularity and exponential decay assumptions.747

By (3.3), the operators L(t) and L∞(t) are related by748

(9.1) L(t) = L∞(t) + M(t),749

where750

(9.2) L∞(t) = B

(
g(t)

2Ω2
g

,
β

2

)
∂2
x +

1

2
g(t)I,751

with B(a, b) =

[
a −b
b a

]
, and where M(t) is the matrix-valued multiplication operator752

M(t, ·)u = M1(t, ·)u− φ(t, ·)〈ψ(t, ·),u〉,(9.3)753

M1(t, ·) = γ|ψ(t, ·)|2J + 2γJψ(t, ·)ψT (t, ·).(9.4)754755

Here ψ is the pulse about which the Haus master equation (2.5) is linearized and φ756

is given by (6.6). Note that here we have chosen M so that M(t, x)→ 0 as x→ ±∞.757

Theorem 9.1. Assume that Hypothesis 4.3 is met and that (g0/Ωg, β) 6= (0, 0).758

Then, the differential operator, L(t), given in (9.1), is a relatively compact perturba-759

tion of L∞(t) in that there exists a λ ∈ ρ(L∞) so that the operator M ◦ (L∞ − λ)−1760

on L2(R,C2) is compact.761

Proof. Using an idea of Kapitula, Kutz, and Sandstede [16] in their paper on the762

Evans function for nonlocal equations, we observe that763

(9.5) L = L∞ + M1 +K ◦ J ,764

where J : L2(R,C2)→ C is given by J (u) = 〈ψ(t, ·),u〉, and K : C→ L2(R,C2) is765

given by K(a) = aφ. Under Hypothesis 4.3, the analogous result in Zweck et al. [39,766

Theorem 3.1] guarantees that L∞ + M1 is a relatively compact perturbation of L∞.767

The theorem now follows from the fact that K◦J is compact, since it factors through768

the finite dimensional space, C.769

10. Analyticity of asymptotic linearized operator in the fiber amplifier.770

In this section, we show that the operator L∞(t)U∞(t, s) is bounded on L2(R,C2),771

where L∞(t) is the asymptotic linearized operator in the fiber amplifier given by772

(9.2), and U∞(t, s) is the corresonding evolution family. Zweck et al. [39] previously773

established an analogous result for the constant-coefficient complex Ginzburg-Landau774

equation under the assumption that the spectral filtering coefficient in the equation775

is positive. These results will be used in Section 11 to prove our main result, Theo-776

rem 4.7.777

We begin by recalling what it means for an operator to be sectorial [24, 27].778

Definition 10.1. A linear operator A : D(A) ⊂ X → X is sectorial if ∃ ω ∈ R,779

θ ∈ (π/2, π], M > 0 so that780

1. ρ(A) ⊃ Sθ,ω := {λ ∈ C |λ 6= ω, | arg(λ− ω)| < θ}, and781

2. ‖R(λ : A)‖ ≤ M
|λ−ω| , for all λ ∈ Sθ,ω.782
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Remark. Lunardi [24, Chapter 2] shows that if A is a sectorial operator then783

a family of operators, T (t) = etA, for t > 0, can be defined in terms of a Dunford784

contour integral so as to satisfy the semigroup properties785

1. T (0) = I,786

2. T (s+ t) = T (s)T (t), for all T, s ≥ 0,787

and for which the mapping t 7→ etA : R+ → B(X) is analytic. Furthermore,788

(10.1)
d

dt
etA = A etA.789

Such a semigroup is called an analytic semigroup.790

We consider solutions, u : [s, LFA]→ H2(R,C2), of the initial value problem791

(10.2)
∂tu = L∞(t)u, for t > s,

u(s) = v, for v ∈ H2(R,C2).
792

Theorem 10.2. Suppose that 0 < Ωg < ∞, that (g0, β) 6= (0, 0), and that ψ is793

differentiable with respect to t. Then, there exists a unique evolution system, U∞(t, s),794

for (10.2) with 0 ≤ s ≤ t ≤ LFA so that795

1. ∃ C so that for all s, t we have ‖U∞(t, s)‖B(L2(R,C2)) ≤ C,796

2. U∞(s, s) = I and U∞(t, r) = U∞(t, s) ◦ U∞(s, r) for all 0 ≤ r ≤ s < t ≤ LFA,797

3. U∞(t, s) ∈ B(L2(R,C2), H2(R,C2)),798

4. The mapping t 7→ U∞(t, s) is differentiable for t ∈ (s, LFA] with values in799

B(L2(R,C2)), and ∂tU∞(t, s) = L∞(t)U∞(t, s), i.e., the function u(t) =800

U∞(t, s)v solves (10.2), and801

5. ∃ C1 and C2 so that ∀ 0 ≤ s < t ≤ LFA,802

(10.3) ‖L∞(t)U∞(t, s)‖B(L2(R,C2) ≤ C1
G(t, s)

t− s
+ C2

g(t)

2
,803

where G(t, s) = exp
(

1
2

∫ t
s
g(τ) dτ

)
.804

Proof. We will show that the first four conclusions of the theorem hold for the805

evolution operator, V∞(t, s), associated to the differential operator, B(t)∂2
x, and that806

(10.4) ‖(B(t)∂2
x)V∞(t, s)‖B(L2(R,C2) ≤

C1

t− s
.807

Then, the theorem immediately follows for the original operators L∞(t) = B(t)∂2
x +808

1
2g(t)I with U∞(t, s) = G(t, s)V∞(t, s). Applying a result from Lunardi [24, Chap. 6],809

to establish the result for V∞(t, s) it suffices to show that the operator A = A(t) :=810

B(t)∂2
x is sectorial and that t 7→ A(t) ∈ Lip([0, LFA],B(H2(R,C2), L2(R,C2))).811

To show A is sectorial, we first observe that A is closed and that ∃ ω ≥ 0 so that812

∀λ > ω, λ ∈ ρ(A) and ‖R(λ : A)‖ ≤ 1
λ−ω . Therefore, by [27, Cor 1.3.8], A is the813

infinitesimal generator of a C0-semigroup for which ‖T (t)‖ ≤ eωt. By the proof of814

[39, Lemma 5.2], for all σ > 0,815

(10.5) ‖R(σ + iτ : A)‖ ≤ C

|τ |
.816

To show that this condition implies that A is sectorial we make use of [27, Thm817

2.5.2]. However, as stated, this theorem requires that the semigroup T (t) is uniformly818
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bounded and 0 ∈ ρ(A). Since neither of these conditions is guaranteed to hold, we819

proceed as follows. Fix ε > 0, define Tε(t) := e−(ε+ω)t T (t), and let Aε = ∂Tε
∂t (0).820

Then ‖Tε(t)‖ < 1 is uniformly bounded and 0 ∈ ρ(Aε). Therefore, the assumptions of821

[27, Thm 2.5.2] hold for Aε. Furthermore, (10.5) holds for Aε since R(σ + iτ : Aε) =822

R(σ + ε+ ω + iτ : A). So by [27, Thm 2.5.2], ∃ 0 < δ < π
2 , M > 0 so that823

1. ρ(Aε) ⊃ Σ = {λ ∈ C : | arg λ| < π
2 + δ} ∪ {0}, and824

2. ‖R(λ : Aε)‖ ≤ M
|λ| , for all λ ∈ Σ \ {0}.825

Translating these conclusions back into statements about A itself, we obtain826

(10.6) ‖R(λ : A)‖ = ‖R(λ− (ε+ ω) : Aε)‖ ≤
M

|λ− (ε+ ω)|
,827

whenever λ− (ε+ω) ∈ Σ \ {0}, which holds precisely when λ ∈ Sπ
2 +δ,ε+ω. Therefore,828

the operators A = A(t) are sectorial.829

Finally, the mapping t 7→ A(t) is Lipschitz, since ∃ C so that830

‖A(t)−A(s)‖B(H2(R,C2),L2(R,C2))) ≤ ‖B(t)−B(s)‖C2×2 =
|g(t)− g(s)|

2Ω2
g

≤ C|t− s)|
2Ω2

g

,831

since t 7→ g(t) is Lipschitz if ψ is differentiable with respect to t.832

11. The essential spectrum of the monodromy operator. In this section833

we prove the main result, Theorem 4.7, which gives conditions under which σess(M) =834

σess(M∞).835

Proof of Theorem 4.7. The lumped model we consider consists of fiber segments836

(single-mode fibers and a fiber amplifier) and discrete input-output devices (a disper-837

sion compensation element, an output coupler, and a fast saturable absorber). We let838

t ∈ [0, T ] denote location in the laser loop. In a fiber segment of length, L, that starts839

at location t = T1, we have t = tloc + T1 ∈ [T1, T1 + L], where tloc denotes distance840

along the fiber. For an input-output device at location, t, we use t− and t+ to de-841

note the locations of the input and output to the device, and we impose the ordering842

t− < t+. We let U(t, s) and U∞(t, s), for t > s, denote the linearized evolution and the843

asymptotic linearized evolution operators from location s to location t. In particular,844

for an input-output device at location, t, the linearized transfer operator of the device845

is denoted by U(t+, t−). The corresponding monodromy operators are then given by846

M = U(T, 0) and M∞ = U∞(T, 0). As in (3.1), M and M∞ are both compositions847

of the linearized transfer operators of the fibers and devices in the lumped model. By848

Weyl’s essential spectrum theorem [20], we just need to show that there is a compact849

operator, K so that850

(11.1) M =M∞ +K.851

To do so we will inductively show that at the location, t, of the end of each fiber852

segment that853

(11.2) U(t, 0) = U∞(t, 0) +K(t),854

and that at the exit, t+, to each input-output device, that855

(11.3) U(t+, 0) = U∞(t+, 0) +K(t+),856

for some compact operators, K(t) and K(t+).857
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First, we show that (11.2) holds in the fiber amplifier. The argument is the same858

for the single-mode fibers. For a fiber segment of length, L, starting at location, T1, an859

argument based on the variation of parameters formula (see [39, Lemma 5.1]) shows860

that, for all t ∈ [T1, T1 + L],861

(11.4) U(t, 0) = U∞(t, T1) ◦ U(T1, 0) +

∫ t

T1

U∞(t, t′) ◦M(t′) ◦ U(t′, 0) dt′,862

where M is the multiplication operator given by (9.3). Indeed, this equation is con-863

sistent at t = T1 and implies that864

(11.5) ∂t U(t, 0) = L(t)U(t, 0).865

Lemma 11.1. The operator866

(11.6) K̃(t) =

∫ t

T1

U∞(t, t′) ◦M(t′) ◦ U(t′, 0) dt′867

is compact.868

Given this lemma and substituting the induction hypothesis,869

(11.7) U(T1, 0) = U∞(T1, 0) +K(T1),870

into (11.4) yields (11.2) with871

(11.8) K(t) = U∞(t, T1) ◦ K(T1) + K̃(t),872

which is compact since the composition of a bounded and a compact operator is873

compact.874

Second, we show that (11.3) holds for each input-output device. Let875

(11.9) B(t+, t−) = U(t+, t−)− U∞(t+, t−).876

For all the input-output devices in the lumped model we are considering, except for877

the fast saturable absorber, B(t+, t−) = 0. By (3.6), for the saturable absorber,878

B(t+, t−)(u) = Bu is a multiplication operator with879

(11.10) B(x) = (`0 − `(ψ(x)) I− 2`2(ψ(x))

`0Psat
ψψT ,880

where881

(11.11) `(ψ) =
`0

1 + |ψin|2/Psat
.882

Since ψ is assumed to be bounded, B(t+, t−) ∈ B(L2(R,C2)) is bounded but is not883

compact. Nevertheless, we have the following theorem.884

Theorem 11.2. Under the assumptions of Theorem 4.7, for the fast saturable885

absorber the operator, B(t+, t−) ◦ U∞(t−, 0), is compact.886

Given this theorem and substituting the induction hypothesis,887

(11.12) U(t−, 0) = U∞(t−, 0) +K(t−),888

into U(t+, 0) = U(t+, t−) ◦ U(t−, 0) yields (11.3) with889

(11.13) K(t+) = B(t+, t−) ◦ U∞(t−, 0) + U(t+, t−) ◦ K(t−),890

which is compact by Theorem 11.2 and Proposition 6.1.891
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Proof of Lemma 11.1. The proof uses the same basic ideas as in the proof of the892

analogous result for the complex Ginzburg-Landau equation given in [39, Theorem893

5.1]. Here we confine our attention to showing that the integrand, C, in (11.6) is894

compact. To do so, it suffices to show that the adjoint, C∗, is compact.895

Throughout the proof, we use times, 0 < s < t < L, that are local to the fiber,896

and we let τ = L − t and σ = L − s be the corresponding backwards time variables.897

Since the adjoint differential operator is defined by L∗(τ) := [L(L−τ)]∗, we have that898

(11.14) L∗(τ) = L∗∞(τ) + M∗(L− τ).899

By definition, the adjoint linearized evolution operator, U∗(σ, τ), in the fiber is the900

operator that satisfies901

(11.15) ∂σ U∗(σ, τ) = L∗(σ)U∗(σ, τ).902

This operator is characterized by the equation903

(11.16) 〈U(t, s)u(s),v(τ)〉L2(R,C2) = 〈u(s),U∗(σ, τ)v(τ)〉L2(R,C2).904

Therefore,905

(11.17) [U(t, s)]∗ = U∗(L− s, L− t).906

Letting τ ′ = L− t′, we find that907

(11.18) C∗ = U∗(L, τ ′) ◦M∗(L− τ ′) ◦ U∗∞(τ ′, τ).908

As in Theorem 9.1, L∗(τ ′) is a relatively compact perturbation of L∗∞(τ ′). Therefore,909

there is a λ(τ ′) ∈ ρ(L∗∞(τ ′)) so that M∗(L − τ ′) ◦ (L∗∞(τ ′) − λ(τ ′))−1 is compact.910

Furthermore, by Theorem 10.2 for the fiber amplifier (which also holds for the adjoint911

operators) and the corresponding result for the single mode fibers (modeled with912

the additional spectral filtering term as in (4.9), see [39, Lemma 5.2]), we have that913

(L∗∞(τ ′)− λ(τ ′)) ◦ U∗∞(τ ′, τ) is bounded. Therefore,914

(11.19) C∗ = U∗(L, τ ′)◦M∗(L−τ ′)◦(L∗∞(τ ′)−λ(τ ′))−1◦(L∗∞(τ ′)−λ(τ ′))◦U∗∞(τ ′, τ).915

is compact, as required.916

The proof of Theorem 11.2 relies on the Kolmogorov-Riesz compactness theorem,917

which can be stated as follows [10].918

Theorem 11.3. A subset, F ⊂ L2(R,C2), is totally bounded if and only if the919

following three conditions hold:920

1. F is bounded,921

2. for all ε > 0 there is an R > 0 so that for all f ∈ F,922

(11.20)

∫
|x|>R

‖f(x)‖2C2 dx < ε2, and923

3. for all ε > 0 there is a δ > 0 so that for all f ∈ F and y ∈ R with |y| < δ,924

(11.21)

∫
R

‖f(x+ y)− f(x)‖2C2 dx < ε2.925
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Proof of Theorem 11.2. We first show that, at the input to the saturable absorber,926

(11.22) U∞(t−, 0) ∈ B(L2(R,C2), H2(R,C2)).927

This property holds since the transfer operators for the fiber amplifier and the single-928

mode fibers with an additional spectral filtering term satisfy929

(11.23) UFA
∞ ,USMF

∞ ∈ B(L2(R,C2), H2(R,C2)),930

and since (4.12) holds for the DCF element and the output coupler. To establish931

(11.23) for UFA
∞ , we use (8.7) to obtain932

‖UFA
∞ u‖2H2(R,C2) ≤ C1‖(1 + ω2)(ÛFA

∞ û)(ω)‖2L2(R,C2)(11.24)933

= C1

∫
R

(1 + ω2)2 exp
(
(1− ω2/Ω2

g)GFA

)
‖û(ω)‖2C2 dω(11.25)934

≤ C2‖u‖2L2(R,C2).(11.26)935
936

The proof for USMF
∞ is similar.937

From this point on, the proofs is analogous to the proof of [39, Theorem 3.1] that,938

for the complex Ginzburg-Landau equation, L(t) is a relatively compact perturbation939

of L∞ There we showed that the operator M(t) ◦ (L∞ − λ)−1 was compact using940

the exponential decay and weak regularity of ψ and the fact that (L∞ − λ)−1 maps941

bounded sets in L2(R,C2) to bounded sets in H2(R,C2) (endowed with the standard942

Sobolev norm). Here we show that K := B(t+, t−) ◦ U∞(t−, 0), is compact using943

the exponential decay and weak regularity of ψ in the saturable absorber, together944

with (11.23). Specifically, it suffices to show that for any bounded family of functions,945

H ⊂ L2(R,C2), the subset F = K(H) ⊂ L2(R,C2) is totally bounded. To do so, we946

check the three conditions of the Kolmogorov-Riesz compactness Theorem 11.3.947

For the first condition, we observe that F is bounded since the operator K and the948

subset H are both bounded. Let G = U∞(t−, 0)(H) ⊂ H2(R,C2). Since H is bounded,949

(11.22) implies that950

(11.27) sup
g∈G
‖g‖H2(R,C2) <∞.951

To verify the second condition, given f ∈ F, there is a g ∈ G so that f = Bg952

where B is given by (11.10). Therefore,953

(11.28)

∫
|x|>R

‖f(x)‖2C2 dx ≤
∫

|x|>R

‖B(x)‖2C2×2‖g(x)‖2C2 dx.954

Let CG = sup
g∈G
‖g‖L2(R,C2). By Hypothesis 4.1, ∃ R1 > 0 so that ‖B(x)‖C2×2 <955

e−r|x|/CG for all |x| > R1. Therefore, if R > R1,956

(11.29)

∫
|x|>R

‖f(x)‖2C2 dx ≤
1

C2
G

e−2rR

∫
|x|>R

‖g(x)‖2C2 dx ≤ e−2rR ≤ ε2,957

provided also that R > | log ε|/r.958
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For the third condition, we recall from Hypothesis 4.1 that B ∈ C1(R,C2×2).959

Since G ⊂ H2(R,C2), we know that F ⊂ H1(R,C2). By a result in Evans [6, §5.8.2]960

on the difference quotient of a H1 function, we find that,961 ∫
R
‖f(x+ y)− f(x)‖2C2 dx ≤ |y|2 ‖fx‖2L2(R,C2)962

≤ |y|2
[
‖Bxg‖L2(R,C2) + ‖Bgx‖L2(R,C2)

]2
963

≤ C|y|2 max{‖B‖2L∞(R,C2), ‖Bx‖2L∞(R,C2)} ‖g‖
2
H2(R,C2),(11.30)964

965

for some constant, C. Finally, by Hypothesis 4.1 and (11.27), the right hand side of966

(11.30) can be made arbitrarily small, provided y is close enough to zero.967

Appendix A. Completion of Proof of Lemma 6.7. To complete the proof968

we establish the estimates in (6.11) and (6.12). By (6.4), (6.5), and (6.6),969

(A.1)

‖F (t+ h)− F (t)− hF ′(t)‖L2(R,C2)

≤
∥∥{B(t+ h)−B(t)− h∂tB(t)}∂2

xv
∥∥
L2(R,C2)

+
∥∥∥{M̃1(t+ h)− M̃1(t)− ∂tM̃1(t)}v

∥∥∥
L2(R,C2)

+ ‖φ(t+ h)〈ψ(t+ h),v〉 − φ(t)〈ψ(t),v〉 − h∂t(φ(t)〈ψ(t),v〉)‖L2(R,C2).

970

To establish (6.11) we estimate each of the term in (A.1). We estimate the first971

term in (A.1) by972 ∥∥{B(t+ h)−B(t)− h∂tB(t)}∂2
xv
∥∥2

L2(R,C2)
973

≤ ‖B(t+ h)−B(t)− h∂tB(t)‖2C2×2

∫
R

∥∥∂2
xv(x)

∥∥2

C2 dx974

≤

∥∥∥∥∥
∫ t+h

t

{(∂tB)(τ)− (∂tB)(t)}dτ

∥∥∥∥∥
2

F

‖v‖2H2(R,C2)975

=

2∑
i,j=1

∣∣∣∣∣
∫ t+h

t

{(∂tB)ij(τ)− (∂tB)ij(t)}dτ

∣∣∣∣∣
2

‖v‖2H2(R,C2)976

≤
2∑

i,j=1

h

∫ t+h

t

|(∂tB)ij(τ)− (∂tB)ij(t)|2dτ ‖v‖2H2(R,C2) ,977

978

where the last inequality follows from979

(A.2)

∣∣∣∣∣
∫ b

a

f(τ)dτ

∣∣∣∣∣
2

≤ (b− a)

∫ b

a

|f(τ)|2dτ,980

which is a special case of the Cauchy-Schwarz inequality. Consequently,981

(A.3)

∥∥{B(t+ h)−B(t)− h∂tB(t)}∂2
xv
∥∥
L2(R,C2)

≤ 2
√

2h sup
τ∈(t,t+h)

‖(∂tB)(τ)− (∂tB)(t)‖C2×2 ‖v‖H2(R,C2) .
982
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Performing a similar calculation to estimate the second term in (A.1), we obtain983 ∥∥∥{M̃1(t+ h)− M̃1(t)− h∂tM̃1(t)}v
∥∥∥2

L2(R,C2)
984

≤
∫
R

∥∥∥∥∥
∫ t+h

t

{(∂tM̃1)(τ, x)− (∂tM̃1)(t, x)}dτ

∥∥∥∥∥
2

C2×2

‖v(x)‖2C2 dx985

≤ sup
x∈R

∥∥∥∥∥
∫ t+h

t

{(∂tM̃1)(τ, x)− (∂tM̃1)(t, x)}dτ

∥∥∥∥∥
2

F

‖v‖2L2(R,C2)986

≤ sup
x∈R

2∑
i,j=1

∣∣∣∣∣
∫ t+h

t

{
(∂tM̃1)ij(τ, x)− (∂tM̃1)ij(t, x)

}
dτ

∣∣∣∣∣
2

‖v‖2H2(R,C2)987

≤ sup
x∈R

2∑
i,j=1

h

∫ t+h

t

∣∣∣(∂tM̃1)ij(τ, x)− (∂tM̃1)ij(t, x)
∣∣∣2dτ ‖v‖2H2(R,C2)988

≤ h2 sup
(τ,x)∈(t,t+h)×R

∥∥∥(∂tM̃1)(τ, x)− (∂tM̃1)(t, x)
∥∥∥2

F
‖v‖2H2(R,C2)989

≤ 8h2 sup
(τ,x)∈(t,t+h)×R

∥∥∥(∂tM̃1)(τ, x)− (∂tM̃1)(t, x)
∥∥∥2

C2×2
‖v‖2H2(R,C2) .(A.4)990

991

Next, adding and subtracting φ(t + h)〈ψ(t),v〉 in the third term of (A.1), we992

obtain993

(A.5)

‖φ(t+ h)〈ψ(t+ h),v〉 − φ(t)〈ψ(t),v〉 − h∂t(φ(t)〈ψ(t),v〉)‖L2(R,C2)

≤ ‖φ(t+ h)〈ψ(t+ h)−ψ(t),v〉 − φ(t)〈h∂tψ(t),v〉‖L2(R,C2)

+ ‖{φ(t+ h)− φ(t)− h∂tφ(t)}〈ψ(t),v〉‖L2(R,C2) .

994

Now, for any u, v, w ∈ L2(R,C2),995

(A.6) ‖u〈v,w〉‖L2(R,C2) ≤ ‖u‖L2(R,C2) ‖v‖L2(R,C2) ‖w‖L2(R,C2) .996

To estimate the first term in (A.5), we add and subtract φ(t+h)〈h∂tψ(t),v〉 and use997

(A.6) to obtain998

(A.7)

‖φ(t+ h)〈ψ(t+ h)−ψ(t),v〉 − φ(t)〈h∂tψ(t),v〉‖L2(R,C2)

≤
{
‖φ(t+ h)‖L2(R,C2) ‖ψ(t+ h)−ψ(t)− h∂tψ(t)‖L2(R,C2)

+ ‖φ(t+ h)− φ(t)‖L2(R,C2) ‖h∂tψ(t)‖L2(R,C2)

}
‖v‖L2(R,C2)

=

{
‖φ(t+ h)‖L2(R,C2)

∥∥∥∥∥
∫ t+h

t

{(∂tψ)(τ)− (∂tψ)(t)}dτ

∥∥∥∥∥
L2(R,C2)

+ h

∥∥∥∥∥
∫ t+h

t

(∂tφ)(τ)dτ

∥∥∥∥∥
L2(R,C2)

‖∂tψ(t)‖L2(R,C2)

}
‖v‖H2(R,C2)

≤
{
h ‖φ(t+ h)‖L2(R,C2) sup

τ∈(t,t+h)

‖(∂tψ)(τ)− (∂tψ)(t)‖L2(R,C2)

+ h2 sup
τ∈(t,t+h)

‖(∂tφ)(τ)‖L2(R,C2) ‖∂tψ(t)‖L2(R,C2)

}
‖v‖H2(R,C2) .

999
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Now,1000

(A.8) ‖φ(t)‖L2(R,C2) ≤
g0C

Esat
‖ψ(t)‖H2(R,C2) ,1001

and1002

(A.9)

‖∂tφ(t)‖L2(R,C2) ≤
1

g0Esat

{∣∣∣∣ −2

Esat
g3(t)E′(t)

∣∣∣∣ ∥∥∥∥(ψ(t) +
∂2
xψ(t)

Ω2
g

)∥∥∥∥
L2(R,C2)

+ g2(t)

∥∥∥∥∂t(ψ(t) +
∂2
xψ(t)

Ω2
g

)∥∥∥∥
L2(R,C2)

}
≤2g2

0C

E2
sat

|E′(t)| ‖ψ(t)‖H2(R,C2) +
2g0C

Esat
‖∂tψ(t)‖H2(R,C2) .

1003

Substituting (A.8) and (A.9) in (A.7), we obtain1004

(A.10)

‖φ(t+ h)〈ψ(t+ h)−ψ(t),v〉 − φ(t)〈h∂tψ(t),v〉‖L2(R,C2)

≤
{
g0hC

Esat
‖ψ(t+ h)‖H2(R,C2) sup

τ∈(t,t+h)

‖(∂tψ)(τ)− (∂tψ)(t)‖H2(R,C2)

+
2g2

0h
2C

E2
sat

sup
τ∈(t,t+h)

|E′(τ)| ‖ψ(τ)‖H2(R,C2) ‖∂tψ(t)‖H2(R,C2)

+
2g0h

2C

Esat
sup

τ∈(t,t+h)

‖∂tψ(τ)‖H2(R,C2) ‖∂tψ(t)‖H2(R,C2)

}
‖v‖H2(R,C2) .

1005

Next to estimate the second term in (A.5) we use (A.6) to obtain1006

(A.11)
‖{φ(t+ h)− φ(t)− h∂tφ(t)}〈ψ(t),v〉‖L2(R,C2)

≤‖φ(t+ h)− φ(t)− h∂tφ(t)‖L2(R,C2) ‖ψ(t)‖L2(R,C2) ‖v‖L2(R,C2) ,
1007

and observe that, by (A.2) and Fubini’s theorem,1008

(A.12)

‖φ(t+ h)− φ(t)− h∂tφ(t)‖2L2(R,C2) =

∥∥∥∥∥
∫ t+h

t

((∂tφ)(τ)− (∂tφ)(t)) dτ

∥∥∥∥∥
2

L2(R,C2)

≤h
∫ t+h

t

‖(∂tφ)(τ)− (∂tφ)(t)‖2L2(R,C2) dτ

≤h2 sup
τ∈(t,t+h)

‖(∂tφ)(τ)− (∂tφ)(t)‖2L2(R,C2) .

1009

Finally, substituting (A.3), (A.4), (A.11), and (A.12) in (A.1), we obtain (6.11).1010
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