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We describe a computational method to compute spectra and slowly-
decaying eigenfunctions of linearizations of the cubic-quintic complex
Ginzburg-Landau equation about numerically determined stationary so-
lutions. We compare the results of the method to a formula for an edge
bifurcation obtained using the small dissipation perturbation theory of
Kapitula and Sandstede. This comparison highlights the importance for
analytical studies of perturbed nonlinear wave equations of using a pulse
ansatz in which the phase is not constant, but rather depends on the per-
turbation parameter. In the presence of large dissipative effects, we dis-
cover variations in the structure of the spectrum as the dispersion crosses
zero that are not predicted by the small dissipation theory. In particu-
lar, in the normal dispersion regime we observe a jump in the number of
discrete eigenvalues when a pair of real eigenvalues merges with the in-
tersection point of the two branches of the continuous spectrum. Finally,
we contrast the method to computational Evans function methods.

1. Introduction

The cubic-quintic complex Ginzburg-Landau (CQ-CGL) equation pro-
vides a qualitative model for the generation of short-pulses in mode-locked
lasers [1]. The CQ-CGL equation includes dissipative terms that model
linear filtering and nonlinear saturable gain/loss. In the special case that
the dissipative terms are small, the equation is a perturbation of the
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cubic-quintic nonlinear Schrödinger (CQ-NLS) equation. Although the
stability of solitary wave solutions of perturbed NLS equations has been
extensively studied [2, 3, 4], the introduction of dissipative terms into the
CQ-CGL equation gives rise to new classes of solutions. While analytical
solutions to the CQ-CGL equation have been found when special relations
hold between the coefficients [5, 6, 7], these solutions are unstable in the
anomalous dispersion regime [8]. Moreover, in the case of large dissipative
effects it has not so far been possible to prove general theorems concerning
the stability of soliton solutions of the CQ-CGL equation, as was done by
Kapitula and Sandstede [2, 3] for the perturbed CQ-NLS equation.

In this paper, we describe computational methods to efficiently de-
termine stationary solutions of the CQ-CGL equation as the parameters
in the equation vary, to compute the spectrum of the linearization of
the CQ-CGL equation about these solutions, and to compute the slowly
decaying eigenfunctions that correspond to discrete eigenvalues near the
continuous spectrum. These methods, which we discuss in Section 2, are
closely related to methods developed by Wang et al. [8] to obtain station-
ary solutions of the Haus mode-locking equation with saturable gain and
loss, and by Akhmediev et al. [9] and Wang et al. [8] to compute pulse
spectra. Many of the theoretical results concerning the stability of solu-
tions of nonlinear wave equations are based on an analysis of the Evans
function [2, 3, 10, 11, 12]. Computational Evans function methods have
also proved to be highly effective [13, 14, 15, 16], and in Section 5 we
contrast our approach with them.

In Section 3, we compare the results of our method to a perturbation
formula of Kapitula and Sandstede [11] for an eigenvalue that bifurcates
out of the edge of the continuous spectrum. Since the corresponding
eigenfunction is not localized in time, this example provides an excellent
test of the method. As we will explain in Section 3, this comparison
highlights the importance of using a pulse ansatz for which the phase is
not constant [2, 3, 11], but rather depends on the perturbation parameter.

In Section 4, we apply the method to study the changes that occur
in the structure of the spectrum of the pulse as the dispersion is var-
ied across zero from the anomalous to the normal regime. To put these
results into context, we first review the theoretical work of Kapitula [3]
and Kapitula and Sandstede [2] who used the Evans function to ana-
lyze the discrete spectrum of the linearization of the perturbed CQ-NLS
(PCQ-NLS) equation about bright solitary wave solutions. In particular,
Kapitula [3] proved that, for order-ε perturbations of the CQ-NLS equa-
tion, there is an eigenvalue with multiplicity two at zero, as well as two
O(ε) discrete eigenvalues, at least one of which is stable. Furthermore,
they showed that any other discrete eigenvalue is close to the edge of the
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continuous spectrum. (The continuous spectrum consists of a complex
conjugate pair of half-lines in the left half of the complex plane.) In par-
ticular, if eigenvalues bifurcate from the continuous spectrum, they do so
only near the edge [2].

For the parameters we used in the CQ-CGL equation, we find that
in the anomalous and zero dispersion regimes (for which the dispersion
parameter satisfies D ≥ 0), the two branches of the continuous spectrum
do not intersect and there are six discrete eigenvalues: two at the origin,
two on the negative real axis, and two close to the edge of the contin-
uous spectrum. Even though the dissipative terms are relatively large,
this result is in qualitative agreement with the theory of Kapitula and
Sandstede. On the other hand, in the normal dispersion regime, D < 0,
the two branches of the continuous spectrum intersect at a point on the
negative real axis. If D is sufficiently close to zero, there are still six
discrete eigenvalues, as in the anomalous dispersion regime. However, as
D decreases further, the two eigenvalues on the negative real axis merge
with the intersection point of the two branches of the continuous spec-
trum. The theoretical results of Kapitula and Sandstede show that this
last phenomenon is only possible when the dissipative terms in the CQ-
CGL equation are sufficiently large. Finally, as D decreases still further
below zero, the two remaining nonzero eigenvalues move away from the
edge of the continuous spectrum, collide on the negative real axis, and
eventually move along the negative real axis towards the right-half plane.

2. Theory and Methods

2.1. Physical model

We consider the CQ-CGL equation in the form

iuz +
D

2
utt + γ|u|2u+ ν|u|4u = i[δu+ βutt + ϵ|u|2u+ µ|u|4u], (1)

where we have written the conservative terms on the left-hand side and
the dissipative terms on the right-hand side of the equation. We model
the combined effects of loss and gain in the system using the terms with
coefficients δ, ϵ, and µ. We assume that the linear loss, δ, is negative to
ensure that the continuous spectrum is stable, and we model saturable
nonlinear gain with a nonlinear gain coefficient, ϵ > 0, and a gain satu-
ration coefficient, µ < 0. We model spectral filtering using the term with
coefficient, β > 0, and the cubic and quintic nonlinear electric susceptibil-
ity of the optical fiber using the terms proportional to γ > 0 and ν > 0,
respectively. Finally, we recall that the chromatic dispersion coefficient,
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D, is positive in the anomalous or focusing dispersion regime and negative
in the normal or defocusing dispersion regime.

2.2. Stationary solutions

We consider solutions of the CQ-CGL Equation (1) of the form u(t, z) =
U(t, z)eiϕz, where ϕ is a constant phase and where the complex envelope,
U(t, z), satisfies

Uz = (δ − iϕ)U +

(
β + i

D

2

)
Utt + (ϵ+ iγ)|U|2U + (µ+ iν)|U|4U (2)

=: c1U + c2Utt + c3|U|2U + c4|U|4U =: F (U , ϕ).

Here, the ci are complex coefficients. In contrast to the case of soliton
solutions of the nonlinear Schrödinger equation, the constant phase, ϕ,
is not a free parameter in Equation (2), but must rather be solved for
simultaneously with the complex envelope, U [5, 8]. As we explain in Sec-
tion 2.4, we search for stationary solutions, U(t, z) = U(t), of Equation (2)
by using a Newton-type method to solve the equation F (U(t), ϕ) = 0.

2.3. The spectrum and stability of a stationary solution

To compute the spectrum and determine the linear stability of a sta-
tionary solution, U , we suppose that U = U + ε∆U . Then, the order-ε
perturbation, ∆U , satisfies

∆Uz =
[
c1 + c2∂

2
t + 2c3|U |2 + 3c4|U |4

]
∆U +

[
c3U

2 + 2c4|U |2U2
]
∆U∗

=: M1∆U +M2∆U∗, (3)

where U∗ denotes the complex conjugate of U . If we set ∆U(z, t) =
eλz v(t)+eλ

∗z w∗(t), and make use of the linear independence of the func-
tions eλz and eλ

∗z, we find that [9]

λ

[
v
w

]
=

[
M1 M2

M∗
2 M∗

1

] [
v
w

]
=: Mv. (4)

The linear stability of stationary solutions of Equation (2) is therefore
determined by the spectrum of the operator M. The eigenvalues of M
come in complex conjugate pairs since N = W∗MW has real entries,

where W = 1√
2

[
1 i
1 −i

]
is unitary. In particular, the operator, M, has

two branches of continuous spectrum [3], {λc, λ
∗
c} where

λc = λc(ω) = c1 − c2 ω
2 = δ − βω2 + i

(
ϕ+

D

2
ω2

)
. (5)
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Since we have assumed that δ < 0 and β > 0, the continuous spectrum is
always stable. In the next section, we describe the method that we used
to numerically compute the discrete spectrum.

2.4. Computational implementation

In this section, we describe the computational methods we used to obtain
a parametrized family of stationary solutions of Equation (2) and to de-
termine how the spectrum of the solution evolves as the parameters in the
equation vary. These methods are somewhat simpler versions of meth-
ods developed by Wang et al. [8]. However, the problem we solve is also
fundamentally simpler, since the equations involved are all local in time,
whereas those in [8] include non-local terms due to the slow saturation of
the gain in the Haus mode-locking equation

For simplicity, we consider the case that the dispersion coefficient, D,
varies over a regular grid of points Dn = D0 + n∆D, with all other pa-
rameters held constant. We discretize the ordinary differential equation,
F (U, ϕ) = 0, for the stationary solution and the stability eigen-problem,
Mv = λv, using a finite time window, [−L,L], and a seven-point centered
difference for the second derivative operator, ∂2

t [8]. Specifically, we set
tk = −L+ (k − 1)∆t for k = 1, . . . ,K, and for any function u on [−L,L]
we let uk := u(tk). Then the seven point second difference operator is
given by

(∂2
t u)k =

1

(∆t)2
[c0uk + c1(uk−1 + uk+1)

+ c2(uk−2 + uk+2) + c3(uk−3 + uk+3)], (6)

where c0 = −49/18, c1 = 1.5, c2 = −0.15, and c3 = 1/90. This discretiza-
tion of the second derivative operator is fifth-order accurate.1 We note
that the computation of (∂2

t u)k for k ∈ {1, 2, 3,K − 2,K − 1,K} requires
values of uℓ for ℓ ∈ {−2,−1, 0,K +1,K +2,K +3}, which are unknown.
Since we are searching for bright soliton solutions of Equation (1) that are
rapidly decaying in time, for the problem of finding stationary solutions,
U = U(t), we may assume that U is zero outside the time window, [−L,L].
However, as we will explain below, this assumption is not necessarily valid
for the computation of the spectrum of M.

To determine stationary solutions, we formulate the problem of solving
for U = [U1, . . . , UK ] and ϕ in F (U, ϕ) = 0 as a nonlinear least squares
problem, which we solve using the Newton-type Levenberg-Marquardt
algorithm [17]. For the first dispersion value, D0, we obtain an initial

1For a limited set of system parameters, we verified that a three-point central difference scheme
works just as well.
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guess,
(
U

(0)
0 , ϕ

(0)
0

)
, for the Levenberg-Marquardt algorithm by numeri-

cally solving Equation (1) over a long distance with a Gaussian pulse as
the initial condition. For subsequent dispersion values, Dn, we obtain

an initial guess,
(
U

(0)
n , ϕ

(0)
n

)
using the stationary solution, (Un−1, ϕn−1),

obtained for the previous dispersion value, Dn−1. In this way, we obtain a
family of stationary bright soliton solutions of the CQ-CGL Equation (1).

We use the following method to compute the discrete spectrum of
the linearized operator, M. For discrete eigenvalues that correspond to
rapidly decaying eigenfunctions the method is fairly standard, since in
the computation of the second difference matrix we may assume that the
eigenfunctions are zero outside the time window, [−L,L]. However, for
discrete eigenvalues that are close to the continuous spectrum, the eigen-
functions may decay slowly as t → ±∞. Consequently, the use of zero
or periodic boundary conditions on a finite time window can result in
large errors in the computed spectrum. In particular, with such bound-
ary conditions it is not possible in practice to observe whether or not
discrete eigenvalues merge into or emerge from the continuous spectrum
as the parameters in the equation vary. To solve this problem, we modify
the action of the second derivative operator using the decay rate of the
eigenfunction near t = ±L. Since this decay rate itself depends on the
eigenvalue, λ, this procedure results in a nonlinear eigen-problem of the
form, M(λ)v = λv, which we solve using a fixed-point iteration.

To simplify notation, when D = Dn, we let λn denote one of the dis-

crete eigenvalues, and we let λ
(s)
n → λn be the sequence of approximations

to λn obtained using the fixed-point iteration. For D = D0, we first com-
pute an initial estimate of the spectrum using zero boundary conditions
in the second difference matrix. By choosing the initial dispersion, D0,
so that the discrete and continuous eigenvalues are well separated in the

complex plane, we can manually identify each point, λ
(0)
0 , in the discrete

spectrum. WhenD = Dn, for n > 0, we instead obtain an initial estimate,

λ
(0)
n , for a given discrete eigenvalue, λn, using the formula

λ(0)
n = λn−1 + λ′(Dn−1)∆D, (7)

where λn−1 is a discrete eigenvalue we previously computed for D =
Dn−1, and where for n > 1 we estimate the derivative using the backward
difference λ′(Dn−1) ≈ (λn−1−λn−2)/∆D. (For n = 1 we use λ′(D0) = 0.)

For a given dispersion value, Dn, once we have an initial estimate, λ
(0)
n ,

for a particular discrete eigenvalue, we use an iterative procedure to obtain

a sequence of refinements, λ
(s)
n , which we stop when |λ(s)

n −λ
(s−1)
n | is suffi-

ciently small. Within each iteration, we use the current estimate, λ
(s−1)
n ,

of the eigenvalue to determine the decay rate of the corresponding eigen-
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function, [v, w]T , near t = ±L. This decay rate is then used to estimate
the unknown values, vℓ and wℓ for ℓ ∈ {−2,−1, 0,K+1,K+2,K+3}, in
the second difference operator given in Equation (6). Specifically, since
we may assume that U = 0 near t = ±L, the eigenfunction, [v, w]T , in
Equation (3) satisfies

∂2
t v =

λ
(s−1)
n − c1

c2
v and ∂2

tw =
λ
(s−1)
n − c∗1

c∗2
w. (8)

Focusing attention on v, let η2 = [λ
(s−1)
n − c1]/c2 where ℜ(η) > 0. Then,

since the amplitude of the eigenfunction should decay as t → ±∞, we
conclude that v(t) = α1e

ηt near t = −L and v(t) = α2e
−ηt near t = L,

for some constants αj . Using this functional form for v, we can solve for
the unknown components, vℓ with ℓ ∈ {−2,−1, 0,K+1,K+2,K+3}, in
Equation (6) in terms of v1 and vK (and similarly for w). For example,
when ℓ ∈ {−2,−1, 0}, we have that vℓ = v1 exp[(ℓ− 1)ηt]. In this manner
we obtain an improved estimate for the second difference operator in

Equation (6) and hence for the linearized operator, M = M[λ
(s−1)
n ], which

now depends on our current estimate, λ
(s−1)
n , of the discrete eigenvalue,

λn. Finally, to solve the nonlinear eigen-problem, M(λ)v = λv, we use
the fixed-point iteration

M[λ(s−1)
n ]v(s)

n = λ(s)
n v(s)

n , (9)

to determine the eigenvalue λ
(s)
n of M[λ

(s−1)
n ] that is closest to λ

(s−1)
n .

3. Small dissipation results at an edge bifurcation

In this section, we study the performance of our computational method
by tracking a discrete eigenvalue of the perturbed nonlinear Schrödinger
equation as it moves into the continuous spectrum in an edge bifurcation.
We compare our results to those obtained via an analytical Evans function
calculation of Kapitula and Sandstede [2, 11]. Following [11], we introduce
a small parameter, α > 0, and choose the parameters in the CQ-CGL
Equation (1) to be D = 2, γ = 4, ν = 3α, δ = 0, β = α, ϵ = 8α, and
µ = −α. Using soliton perturbation theory, Kapitula and Sandstede [11,
Eqn. (6)] derived a stationary solution of the form

u(t, z) =

√
ϕ0

2
sech(

√
ϕ0 t) exp(i ϕ0z)

[
1 + αΨ(t;ϕ0) +O(α2)

]
, (10)

where the constant ϕ0 is independent of α and the function Ψ is indepen-
dent of z. For the parameters we used, ϕ0 = 17.5.
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Figure 1. Small dissipation results at an edge bifurcation. Left: The real
part of the bifurcating eigenvalue as a function of α. The results obtained
using our method are shown with the blue solid line, and the results
obtained using Equation (11) with λe = i(ϕ0+mα) are shown with the red
dashed line. Center: The imaginary part of the same eigenvalue. Right:
The distance between the eigenvalues obtained using the two methods.

We first used our method to continue the stationary solution u(t, z) =
U(t) exp(i ϕz) from the solution given by (10) at α = 0 out to α = 0.01.
At α = 0.01, the eigenfunction corresponding to the discrete eigenvalue,
λ(α), that is closest to the edge, λe, of the continuous spectrum was
reasonably well localized, and could be well approximated with the aid
of a standard eigenvalue solver by using zero boundary conditions in the
second difference matrix. We were then able to successfully continue the
pair, (U, ϕ), and the discrete eigenvalue, λ(α), back from α = 0.01 to
α = 2× 10−4, at which point |λ(α)−λe| = 1.4× 10−6. Using a regression
algorithm, we obtained the linear fit, ϕ ≈ 17.5+59.95α, for the phase with
a 95% confidence interval, [59.87, 60.01], for the slope. However, when
the held ϕ = ϕ0 fixed and just solved for U , we found that the residual
output by the Levenberg-Marquardt algorithm exceeded the tolerance we
imposed, and the algorithm failed to find a stationary solution. These
results highlight how important it is for analytical studies of perturbed
nonlinear wave equations to use a pulse ansatz in which the phase is not
constant [2, 3, 11], but rather depends on the perturbation parameter.

Starting with the constant phase ansatz in Equation (10), Kapitula
and Sandstede [11, Eqn. (21)] proved that the discrete eigenvalue, λ(α),
that bifurcates out of the edge, λe = iϕ0, of the continuous spectrum
satisfies

λ(α)− λe = −Aϕ2
0

18
α2 + iϕ0

A2 − ϕ2
0

36
α2 +O(α3), (11)

where, for the parameters we used, A = −15.5. Although Equation (11)
was derived under the assumption of a constant phase, ϕ = ϕ0, the results
shown in Figure 1 strongly suggest that (11) also holds if we assume that
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ϕ = ϕ0 + mα, provided that we set λe = i(ϕ0 + mα), as suggested by
Equation (5). Indeed it should be possible to adapt the proof of (11)
given in [2, 11] to establish this more general and physically meaningful
result. In the left panel (resp. center panel) of Figure 1 we plot the
real part (resp. imaginary part) of the eigenvalue as a function of the
small parameter, α. The results obtained using our method are shown
with the blue solid line, and the results obtained using Equation (11) are
shown with the red dashed line. In the right panel we show that the error
between the two methods is O(α3), as predicted by the theory.

4. Large dissipation results across zero dispersion

4.1. Stationary solutions

To study short pulse solutions in the vicinity of zero dispersion, we varied
the dispersion from D = −0.2 to D = 0.2 and fixed the other parameters
in the CGL Equation (1) to be δ = −0.01, β = 0.08, γ = 1, ϵ = 1,
ν = 10, and µ = −3. The stationary pulses we found using the Newton-
type method are similar to those found by Soto-Crespo et al. [5] for a
different set of parameters using a numerical PDE solver. In Figure 2,
we plot the pulse parameters as a function of the dispersion, D. We
show the amplitude and width of the pulse in the upper left and upper
right panels respectively, and the pulse energy and the phase parameter
ϕ in the stationary solution, u(t, z) = U(t)eiϕz of Equation (1), in the
lower left and lower right panels, respectively. We define the width of the
pulse to be the full-width at half-maximum of the pulse amplitude and
the pulse energy to be E =

∫
|U(t)|2 dt. These results are in qualitative

agreement with results obtained by Soto-Crespo et al. [5] for a similar set
of parameters. The most important feature in these plots is the significant
narrowing of the pulse as the dispersion increases from the normal to the
anomalous dispersion regime.

4.2. Linear stability and pulse spectrum

Although the narrowing of the pulse width is the only significant change in
the stationary solution as the dispersion changes from normal to anoma-
lous, we will now show that there are several significant changes in the
pulse spectrum in the complex plane. Moreover, as we will see, the struc-
ture of these spectra can be quite different from that of the hyperbolic
secant solution of the nonlinear Schrödinger equation, for which the con-
tinuous spectrum is a pair of half-lines on the positive and negative imag-
inary axes with edges at ±iϕ, and the discrete spectrum consists of a
single eigenvalue of algebraic multiplicity four at the origin [18].
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Figure 2. Amplitude, width, energy and ϕ-parameter of the stationary
solution as functions of dispersion, D.

In Figure 3, we plot the spectrum of the stationary solutions found
in Section 4.1 for D = 0.2 (upper left), D = −0.001 (upper right), D =
−0.026 (lower left), and D = −0.95 (lower right). We note that the scales
differ in each of these plots. For each value of the dispersion parameter,
D, we obtained the continuous spectrum using Equation (5) together
with the computed values for the phase, ϕ, shown in the bottom right
panel of Figure 2. For all values of D, the continuous spectrum is a
pair of complex conjugate half-lines in the left-half plane with edges at
the points δ ± iϕ. As we see in the lower right panel of Figure 2, the
phase ϕ > 0 for all the stationary solutions we studied. Consequently, by
Equation (5), when D > 0 the two branches of the continuous spectrum
slope toward the origin but do not intersect (as in the upper left panel
of Figure 3). In particular, there is a band gap between δ ± iϕ, as in
the case of the nonlinear Schrödinger equation [18]. In the special case
that D = 0, the continuous spectrum forms a complex conjugate pair
of half-lines parallel to the real axis. (The upper right panel shows the
D = −0.001 perturbation of this case.) Finally, when D < 0 the band
gap disappears and the two branches of the continuous spectrum intersect
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Figure 3. Spectrum of the stationary solutions for D = 0.2 (upper left),
D = −0.001 (upper right), D = −0.026 (lower left), and D = −0.95
(lower right).

at the point x(D) = δ+ 2βϕ/D on the negative real axis (as in the lower
two panels of Figure 3). We note that x(D) → −∞ as D → 0−.

We now discuss how the structure of the discrete spectrum changes
as the dispersion changes from the anomalous to the normal regime. We
computed each of the discrete eigenvalues using the method described
in Section 2.4. We verified that if we simultaneously double the com-
putational time window and quadruple the number of grid points, that
the results shown in Figures 3 and 5 do not change. In particular, the
maximum over all dispersion values of the absolute error between the
eigenvalues computed using the two sets of discretization parameters was
1.9× 10−5.

For all dispersion values, there is a double eigenvalue at zero, due
to the phase and translational invariance of Equation (1). In addi-
tion, for D = 0.2 (see the upper left panel of Figure 3) there are
four more discrete eigenvalues: a complex conjugate pair of eigenvalues,
λ± = 0.00195 ± 0.2666 i, located near the edge of the continuous spec-
trum, and two eigenvalues, λℜ,1 = −0.4669 and λℜ,2 = −0.2947, on the
negative real axis. We observe that for D = 0.2 the stationary solution is
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Figure 4. Upper left: The eigenfunction of the unstable eigenvalue, λ+,
when D = 0.2. Upper right: Evolution of a perturbation of the stationary
solution by the unstable eigenfunction in the upper left panel. Lower
left: The imaginary part of the w-component of the eigenfunction with
eigenvalue, λℜ,2, when D = −0.026. Lower right: The real part of the v-
component of the eigenfunction with eigenvalue, λℜ,1, when D = −0.026.

unstable since ℜ(λ±) > 0. This spectrum is in qualitative agreement with
that shown in Wang et al. [8, Fig. 3], for a different set of parameters in
the anomalous regime, except that the unstable eigenvalues, λ±, are not
present, and so there are only four discrete eigenvalues in their spectrum.

In the upper left panel of Figure 4, for D = 0.2, we plot the real and
imaginary parts of the components, v and w, of the unstable eigenfunction
with eigenvalue, λ+. As we see in the upper right panel of Figure 4, if
we perturb the stationary solution, U , using a scaling of this unstable
eigenfunction whose amplitude is 1% of the amplitude of U , we find that
the amplitude of the pulse first oscillates in z, before eventually dissipating
to the zero solution.

Returning our attention to Figure 3, we observe that when D = 0.2,
the eigenvalue, λ+, lies slightly above the edge of the upper branch of
the continuous spectrum, whereas for D = −0.001 it lies below. For
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intermediate values of D we observed that although the eigenvalues, λ±,
come close to the continuous spectrum they do not merge with it. In
fact the corresponding eigenfunctions decay with sufficient rapidity that
the values computed for λ± when we use decaying boundary conditions
for the second difference operator agree very well with those obtained
using zero boundary conditions. Once D has decreased to D = −0.001
(upper right panel), the eigenvalues, λ±, have moved into the left-half
plane, the eigenvalues λℜ,1 and λℜ,2 are still on the negative real axis,
and the pulse is stable. For D = −0.026 (lower left panel), the spectrum
agrees qualitatively with that shown in Akhmediev et al. [9, Fig. 2],
for a different set of parameters in the normal dispersion regime, except
that the two negative real eigenvalues, λℜ,1 and λℜ,2, are not present,
and so there are only four discrete eigenvalues in their spectrum. All the
results we have shown so far are in qualitative agreement with the small
dissipation theory of Kapitula [3] and Kapitula and Sandstede [2].

We now recall the analytical result of Kapitula and Sandstede [2] for
the PCQ-NLS equation that if a discrete eigenvalue merges into the con-
tinuous spectrum it does so only at the edge, δ ± iϕ. In contrast to this
result, we will now show that in the normal dispersion regime when the
dissipative parameters in Equation (1) are no longer small, the pair of neg-
ative real eigenvalues, λℜ,1 and λℜ,2, can simultaneously merge into the
intersection point of the two branches of the continuous spectrum. First,
we see in the lower left panel of Figure 3 that as D decreases below zero,
the intersection point of the two branches of the continuum approaches
the real eigenvalues, λℜ,1 and λℜ,2. In fact, for D = −0.026, these two
eigenvalues are sufficiently close to the continuous spectrum that the cor-
responding eigenfunctions decay slowly as t → ±∞. For example, in the
lower panels of Figure 4, we plot two components of the eigenvectors with
eigenvalues λℜ,2 = −0.4789 (left) and λℜ,1 = −0.4588 (right).

In the left panel of Figure 5 we plot the real eigenvalues, λℜ,1 with a
solid blue line and λℜ,2 with a dashed red line, as functions of D. As D
decreases from D = 0.2, λℜ,2 decreases and merges with the intersection
point of the two branches of the continuous spectrum at D ≈ −0.03. At
the same time, λℜ,1 first increases and then decreases, merging into the
intersection point of the two branches of the continuous spectrum at the
same dispersion value. At least for −1 < D < −0.03, there are only four
discrete eigenvalues, instead of the original six.

Finally, in the right panel of Figure 5, we track the evolution of the
eigenvalues, λ±, as D decreases from D = 0.2 to D = −1. The path
taken by λ+ is shown with the dashed green curve and that taken by λ−
is shown with the dotted red curve. At D = 0.2, the eigenvalue, λ+, is
located at the top right point on the dashed green curve. As D decreases,
λ+ moves down the dashed green curve, crossing into the left-half plane
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Figure 5. Left: The real eigenvalues, λℜ,1 (solid blue line) and λℜ,2

(dashed red line), as functions of D. Right: The curves of the eigenvalues,
λ+ (dashed green curve) and λ− (dotted red curve), parametrized by D
which decreases from D = 0.2 to D = −1. The curves start in the
right-half plane at D = 0.2. The solid blue lines and symbols show the
spectrum at the Hopf bifurcation point, Dcr = 0.047.

at Dcr = 0.047 at which point the pulse becomes stable. Therefore, there
will be a periodic solution at this Hopf bifurcation. The spectrum shown
with solid blue lines and symbols in Figure 5 is the spectrum of the pulse
at Dcr. When we decrease D below the value D ≈ −0.03 at which the
real eigenvalues, λℜ,1 and λℜ,2 merge with the continuous spectrum, the
complex eigenvalues, λ±, collide on the negative real axis. After the
collision, one eigenvalue (shown with the dotted red line) moves to the
right on the real axis and the other eigenvalue (shown with the dashed
green line) moves first to the left and then to the right. We have not
been able to continue the stationary solution far enough into the region
D < −1 to determine whether the pulse becomes unstable again.

5. Comparison with computational Evans function methods

In this section, we compare the method we used to determine discrete
eigenvalues of the linearized problem to computational methods based on
the Evans function [13, 14, 15, 16]. We computed the eigenvalues by us-
ing general-purpose numerical linear algebra software to solve a nonlinear
eigenvalue problem using a fixed-point iteration. The nonlinearity of this
eigenvalue problem arises because the boundary conditions imposed for
the discretization of the second derivative operator, ∂2

t , depend on the
exponential decay rate of the eigenfunction, and hence on the eigenvalue
we wish to compute. The idea of using exact asymptotic boundary condi-
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tions at the ends of the computational time window also forms the basis
of the computational Evans methods [15].

Building on prior work by Pego and Weinstein [10, 13] for a KdV-
Burgers equation, Afendikov and Bridges [14] developed a computational
Evans function method for the cubic CGL equation. The discrete eigen-
values are those λ ∈ C for which there is a nontrivial solution to an
associated first-order system of ordinary differential equations of the form

vt = A(t;λ)v, for v = v(t) ∈ C4, (12)

with v(±∞) = 0. The spectrum of the constant coefficient operator
A(λ) := lim

t→±∞
A(t;λ) has two eigenvalues with a positive real part and

two with a negative real part, which depend analytically on λ away from
the continuous spectrum. Let U−(t;λ) (resp. S+(t;λ)) be the two-
dimensional unstable (resp. stable) manifold of solutions whose expo-
nential decay rates as t → −∞ (resp. t → +∞) are given by the two
eigenvalues with positive (resp. negative) real part. If W−(t;λ) (resp.
W+(t;λ)) is a 4 × 2 matrix whose columns form an analytically varying
basis for U−(t;λ) (resp. S+(t;λ)), then the Evans function is the analytic
function D(λ) = det[W−(t;λ) W+(t;λ)]. Since λ is an eigenvalue if and
only if U(t;λ) ∩ S(t;λ) ̸= ∅, the eigenvalues are the zeros of D.

Because the two basis vectors for U−(t;λ) (or S+(t;λ)) have differ-
ent growth rates, the problem of computing pairs of linearly indepen-
dent solutions of Equation (12) is stiff, and so the numerically computed
basis vectors will not maintain linear independence. To overcome this
stiffness problem, rather than solving for the basis vectors individually,
Afendikov and Bridges [14] regard W±(t;λ) as being an element of the
six-dimensional exterior-product vector space, Λ2(C4), and formulate a
6× 6 system of first-order equations for W± which can be solved numer-
ically using standard techniques. The resulting algorithm for computing
the Evans function is both fast and robust. Afendikov and Bridges then
used a Newton solver to compute the zeros of D in the right-half plane.
Because the Evans function is complex analytic, generalizations of the
Argument Principle have also been used to find the zeros of D via nu-
merical computation of certain contour integrals [13, 15]. More recently,
Humpherys and Lytle [16] developed a root-following method to track an
eigenvalue, λ, as a parameter in the equation varies. This method, which
is formulated as a two-point boundary value problem for (W−,W+, λ),
is somewhat more efficient than the contour integration methods. How-
ever, because the domain of analyticity of D must avoid the continuous
spectrum, to our knowledge computational Evans function methods have
not yet been applied to the problem addressed in this paper of tracking
eigenvalues as they merge with or emerge from the continuous spectrum.



16 Yannan Shen et al.

This observation is somewhat surprising, as it is precisely in this situation
that the standard numerical methods for computing eigenvalues fail. An
important open problem is to develop robust computational methods to
determine the stability of periodically stationary solutions of the nonlocal
equations that model realistic laser systems, including those that have
been shown to generate flat-topped pulse shapes [19, 20]. Two promising
approaches are based on the methods used for the results in this paper
and on more recent theoretical and computational Evans function meth-
ods [12, 16].

6. Conclusions

We described computational methods to compute variations in the spec-
tra of stationary solutions of the CQ-CGL equation as the coefficients
in the equation vary. In the anomalous dispersion regime the spectra
we obtained in the presence of large dissipative effects are in qualitative
agreement with the theoretical results of Kapitula and Sandstede obtained
for O(ε)-perturbations of the CQ-NLS equation [2, 3]. However, after the
dispersion crosses zero into the normal dispersion regime, we observed
variations in the spectrum due to large dissipative effects that are not
predicted by the small-dissipation, PCQ-NLS theory.

Our original motivation for investigating the stability of pulse solutions
of the CQ-CGL equation near zero dispersion was that results of Gordon
and Haus [21] for the NLS equation suggest that timing and phase jitter
should be minimized when the average dispersion in the laser cavity is
close to zero. Indeed, this phenomenon has recently been observed in
experiments [22]. The methods we have described here will be used to
develop fully numerical methods to compute the effects of noise in short
pulse lasers modeled by generalizations of the CGL equation.
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