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1. Introduction. A fundamental problem in the computational modeling of18

rarefied gases and plasmas is to determine the velocity probability density function19

(pdf) of each particle species. The evolution of these velocity pdfs is governed by20

the Boltzmann equation, which models particle transport and collision processes21

[3, 4, 5]. Both deterministic and stochastic particle methods are used to solve the22

Boltzmann equation. Although deterministic methods avoid the uncertainties inher-23

ent in stochastic approaches, the cost of computing the Boltzmann collision opera-24

tor can still be prohibitively high, especially in the low probability tails of the pdf.25

However, recent theoretical advances in combination with increased computational26

power have led to the introduction of several promising deterministic spectral meth-27

ods [7, 8, 9, 10, 15, 16, 24]. For example, Gamba and Rjasanow recently proposed28

a Petrov-Gelerkin method whose computational efficiency is comparable to that of29

stochastic methods [10]. Despite the recent reduction of their computational cost, de-30

terministic methods are not as flexible as stochastic methods for the modeling of the31

diverse range of collision, transport, and boundary surface phenomena, and particle32

gain and loss mechanisms that occur in experimental settings [11, 13].33

Accurate modeling of the low probability tails of the velocity distribution is also of34

interest to experimentalists. For example, reaction rates in plasmas are determined by35

the overlap between the electron velocity pdf and the electron-impact cross sections36

of the various species. Therefore, accurate calculation of the low probability tails37

of the electron velocity pdf is critical. If the plasma is in thermal equilibrium, the38

electron velocity pdf can often be assumed to be Maxwellian. However, experimental39

results demonstrate that the Maxwellian assumption is often invalid [1, 6, 21, 22, 23],40

especially for pulsed plasmas where the velocity pdf may depend strongly on both41

spatial position and on time [17]. Consequently, there is still a pressing need for42
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2 S. LAMA, J. ZWECK, AND M. GOECKNER

improved stochastic particle methods that have both greater computational efficiency43

and higher accuracy, especially in the higher order moments and in the low probability44

tails of the distributions.45

Unlike deterministic methods, particle methods are not based on solving the46

Boltzmann equation directly. Rather they simulate a real system using stochastic47

particles, each of which represents a group of physical particles that are in close prox-48

imity in phase space. Collisions between stochastic particles are designed so as to49

approximate the collision processes modeled by the Boltzmann equation. Modern50

particle methods are based on the Direct Simulation Monte Carlo (DSMC) method51

which was developed by Bird [2]. A convergence proof for this method was given by52

Wagner [26]. The DSMC method has many computational advantages over deter-53

ministic methods. However, the computational cost of accurately computing the low54

probability tails is still very high. To resolve the low probability tails with relatively55

low computational cost, Rjasanow and Wagner introduced a generalization of the56

DSMC method which they called the Stochastic Weighted Particle Method (SWPM).57

One of the challenges for the SWPM is that the number of stochastic particles58

gradually increases over the course of the simulation. To reduce the computational59

cost, Rjasanow and Wagner proposed to use a particle reduction scheme in combi-60

nation with a clustering technique [18, 20]. With these methods, the particles are61

partitioned into groups such that the particles are close together, and each group is62

replaced by a small number of particles. A reduction scheme that does not require63

clustering was proposed by Vikhansky and Kraft [25]. Their reduction scheme redis-64

tributes the statistical weights of the particles so as to conserve the mass, momentum65

and energy of the ensemble. They argue that the efficiency of a particle reduction66

scheme that relies on clustering primarily depends on the computational cost of the67

clustering algorithm. For the clustering algorithm used for the results in this paper,68

the computational cost scales linearly with the number of computational particles.69

In this context, it is important to note that the convergence theorem for the SWPM70

obtained by Rjasanow and Wagner [20] requires that the maximum diameter of the71

groups of particles converges to zero as the initial number of computational parti-72

cles increases. As a result, there is a theoretical advantage to employing a clustering73

technique.74

The reduction schemes proposed by Rjasanow and Wagner were designed to pre-75

serve a specified set of moments of the distribution. The particle reduction scheme76

of Rjasanow and Wagner that preserves the most moments is a deterministic reduc-77

tion scheme that preserves the total weight, momentum, energy and central heat flux78

within each group [18, 20]. The total weight corresponds to the fraction of physical79

particles represented by the group. Although this reduction scheme preserves the cen-80

tral heat flux of each group, it does not preserve the raw heat flux, and consequently81

neither the raw nor the central heat flux are preserved for the entire system.82

In this paper, we improve upon the reduction scheme of Rjasanow and Wagner83

by conserving all of the moments up to the second order (i.e. the full pressure and84

momentum flux tensors), as well as both the raw and central heat flux, which are third85

order moments. Conservation of all these moments within each group automatically86

guarantees that they are conserved for the entire system.87

We performed two series of simulation studies to evaluate the degree to which88

our new deterministic particle reduction scheme improves upon that of Rjasanow and89

Wagner’s deterministic reduction schemes. First, we present results which confirm90

that the existing scheme of Rjasanow and Wagner does not conserve the raw heat91

flux within each group, while our new scheme conserves both raw and central heat92
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STOCHASTIC WEIGHTED PARTICLE METHOD 3

flux of each group. Second, we study the convergence rate of the SWPM with the93

new and existing reduction schemes. In particular, we will present results showing94

the rate at which the scalar fourth order moment converges to its true value as the95

number of stochastic particles increases. We compare the results of our new reduction96

scheme with the existing deterministic schemes to show that our scheme requires a97

fewer initial number of computational particles and less computational time for the98

convergence of the scalar fourth order moment compared to the existing reduction99

schemes.100

In section 2, we review the stochastic weighted particle method, and in section 3,101

we discuss the reduction schemes of Rjasanow and Wagner and introduce our new102

reduction scheme. In section 4, we briefly show that the assumptions in Wagner’s103

convergence theorem hold for our new particle reduction scheme. In section 5, we104

present our numerical results, and finally in section 6 we make some conclusions.105

2. The stochastic weighted particle method. In this section, we review the106

stochastic weighted particle method for the spatially homogeneous Boltzmann equa-107

tion. The stochastic weighted particle method is a particle method [19] that improves108

upon Bird’s DSMC method [2] by decreasing the uncertainty in the computation of109

rare events. In Bird’s method, each stochastic particle represents the same number of110

physical particles, and the number of stochastic particles is kept constant throughout111

the simulation. With the SWPM, the number of physical particles represented by112

a single stochastic particle varies over the course of the simulation. Each stochastic113

particle represents a group of physical particles that are in close proximity in phase114

space. Each stochastic particle is characterized by its velocity and weight. The weight115

quantifies the proportion of physical particles represented by the given stochastic par-116

ticle. The SWPM is based on a generalized version of the collision process used in the117

DSMC method in which only the physical particles corresponding to some portion of118

the weights of the colliding stochastic particles undergo collisions. For each stochastic119

collision, this results in the creation of two new stochastic particles whose velocities120

are given by the post-collision velocities and whose weights quantify the proportion of121

physical particles involved in the collision process [18, 20]. The weights of the original122

pair of colliding stochastic particles are reduced so as to keep the total weight of the123

system constant. As the number of stochastic particles increases due to collisions, the124

number of high velocity particles in the low probability tails of the velocity pdf also125

increases. By periodically applying a clustering technique and a particle reduction126

scheme, the proportion of particles in the center of the distribution is reduced. The127

combined effect of these processes is to increase the fraction of stochastic particles128

occupying the low probability tails of the velocity pdf, which decreases the statistical129

uncertainty in the tails.130

We consider the spatially homogeneous Boltzmann equation for a single species of131

particles with unit mass. This equation, which describes the evolution of the velocity132

probability density function (pdf), f , due to collisions, is given by133

(2.1)
∂f

∂t
(v, t) =

∫
R3

∫
S2

B(v,w,Θ)
[
(f(v′, t) f(w′, t) − f(v, t) f(w, t)

]
dΘ dw,134

with an initial condition of the form135

(2.2) f0(v) = f(v, 0).136

Here, S2 denotes the unit sphere, B is the collision kernel, t is time, v and w are the137

pre-collision velocities, and v′ and w′ are the post-collision velocities. For simplicity,138
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4 S. LAMA, J. ZWECK, AND M. GOECKNER

for the results in this paper we consider isotropic Maxwell type interactions, for which139

(2.3) B(v,w,Θ) =
1

4π
.140

Assuming that the collisions are elastic, the post-collision velocities are given in terms141

of the pre-collision velocities and the direction vector, Θ, by142

(2.4) v′ =
1

2

[
v + w −Θ |w − v|

]
and w′ =

1

2

[
v + w + Θ |w − v|

]
.143

The state of the ith stochastic particle is given by (vi, gi), where vi and gi are144

the velocity and weight, respectively. The state of the entire stochastic system is145

(2.5) z = {(g1,v1), (g2,v2), . . . , (gm,vm)},146

where m is the current number of stochastic particles. To model a collision between147

the stochastic particles indexed by i and j, we introduce the weight transfer function,148

γcoll(z; i, j). This function encodes the proportion of physical particles represented149

by the stochastic particles indexed by i and j that undergo collisions when the state150

of the system is z. The weight transfer function cannot exceed the minimum of the151

weights of the colliding particles,152

(2.6) 0 ≤ γcoll(z; i, j) ≤ min(gi, gj).153

During a collision between the stochastic particles indexed by i and j, only the154

fraction of physical particles in the system represented by the weight γcoll(z; i, j) un-155

dergo collisions. This process is modeled by adding one or two new stochastic particles156

to the system. For the results in this paper, we use γcoll(z; i, j) = 1
2 min (gi, gj), which157

always results in two new stochastic particles. In this case, the state, [Jcoll(z; i, j,Θ)]k,158

of the k-th stochastic particle after a collision between particles i and j is given by159

[18, 20],160

(2.7) [Jcoll(z; i, j,Θ)]k =



(vk, gk), if k ≤ m, k /∈ {i, j},
(vi, gi − γcoll(z; i, j)), if k = i,

(vj , gj − γcoll(z; i, j)), if k = j,

(v′i, γcoll(z; i, j)), if k = m+ 1,

(v′j , γcoll(z; i, j)), if k = m+ 2,

161

resulting in a new system state,162

(2.8) z = {(g1,v1), (g2,v2), . . . , (gm+1,vm+1), (gm+2,vm+2)}.163

After the collision, the fraction of physical particles corresponding to the weight164

γcoll(z; i, j) are assigned the post-collision velocities, and the remaining fraction of165

particles is unchanged. The two new stochastic particles are indexed by m + 1 and166

m + 2. To keep the total weight constant this weight is subtracted from the weights167

of the colliding stochastic particles, indexed by i and j. For elastic collisions given168

by (2.4), this stochastic collision process conserves the total weight, momentum and169

energy.170

To correctly model the evolution of the velocity pdf, we must relate the collision171

frequency for the stochastic system to that of the physical system. The total collision172

frequency in the physical system is given by173

(2.9) ν =

∫
R3

∫
R3

∫
S2

B(v,w,Θ) f(v, t) f(w, t) dΘ dw dv.174
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STOCHASTIC WEIGHTED PARTICLE METHOD 5

If we let νgigj denote the frequency of collisions between the physical particles that175

correspond to stochastic particles with states (vi, gi) and (vj , gj), then by (2.9) we176

obtain177

(2.10) νgigj = gi gj

∫
S2

B(vi,vj ,Θ) dΘ.178

Furthermore, if we let ν̃ij denote the frequency of collisions between particles i and179

j in the stochastic system, then by the definition of the weight transfer function, we180

have that181

(2.11) ν̃ij γcoll(z; i, j) = νgigj .182

Therefore by (2.10), we obtain183

(2.12) ν̃ij =
gi gj

γcoll(z; i, j)

∫
S2

B(vi,vj ,Θ) dΘ,184

and so, by (2.9) and (2.12), the total collision frequency in the stochastic system is185

given by186

(2.13) ν̃(z) =
1

2

m∑
i=1

m∑
j=1
j 6=i

gi gj
γcoll(z; i, j)

∫
Θ∈S2

B(vi,vj ,Θ) dΘ.187

Using this frequency, we can obtain the waiting time between stochastic colli-188

sions. Since it is memoryless, this waiting time is a Poisson process which follows189

an exponential distribution. Therefore, the probability that a collision did not occur190

by time, t, is given by the survival function, P (s > t) = e−ν̃(z)t. Since the survival191

function has an uniform distribution on [0, 1], the time between collisions is given by192

∆t = −ln(r)/ν̃(z), where r is a random number uniformly distributed on [0, 1]. Once193

the time interval between collisions is calculated, the time counter is updated.194

The probability, p(z; i, j), of a collision between the stochastic particles i and j is195

given by the ratio of the frequency ν̃ij of collisions between stochastic particles i and196

j given in (2.12) and the total collision frequency given in (2.13), that is,197

(2.14) p(z; k, l) =

gk gl
γcoll(z;k,l)

∫
Θ∈S2

B(vk,vl,Θ) dΘ

m∑
i=1

m∑
j=1
j 6=i

gi gj
γcoll(z; i, j)

∫
Θ∈S2

B(vi,vj ,Θ) dΘ

.198

Once a pair of colliding stochastic particles, k and l, has been randomly selected, the199

direction vector Θ is chosen using the probability density function200

(2.15) η(Θ) =
B(vk,vl,Θ)∫

Θ̃∈S2

B(vk,vl, Θ̃) dΘ̃

.201

In the case of the constant collision kernel given by (2.3), the probability in (2.14)202

further simplifies to203

(2.16) p(z; k, l) =

gk gl
γcoll(z;k,l)

m∑
i=1

m∑
j=1
j 6=i

gi gj
γcoll(z; i, j)

,204
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6 S. LAMA, J. ZWECK, AND M. GOECKNER

and η(Θ) = 1
4π . After the colliding pair of stochastic particles and the direction vector205

have been chosen, the velocities and weights of the colliding particles are updated using206

(2.7).207

The computation of the collision frequency in (2.13) and collision probability in208

(2.14) can be computationally expensive since in general these quantities need to be209

updated after each collision. This issue also arises for the DSMC method when the210

collision kernel is not constant. To overcome this computational issue, the technique211

of null collisions was developed by Koura [12] for the DSMC method. With this212

technique, an equal maximum collision frequency is assigned to all pairs of particles,213

which leads to an equal probability of collision for all pairs. Consequently the colliding214

pair can be selected at random from a uniform distribution. Once a pair is chosen,215

we decide whether the collision is an actual one or a null collision based on the216

probability given by the ratio between the actual collision frequency and the assigned217

equal collision frequency. Rjasanow and Wagner generalized the technique of the null218

collisions to the SWPM [18, 20].219

3. A reduction scheme conserving total weight, momentum, pressure220

tensor and heat flux. As we explained in section 1, one of the challenges for the221

SWPM is that the number of stochastic particles gradually increases. For computa-222

tional feasibility, it is necessary to periodically reduce the number of particles. There223

are two steps in the reduction process. First, the stochastic particles need to be clus-224

tered into groups, and then each group of particles needs to be replaced by a small225

number of particles.226

A number of clustering techniques have been proposed by Rjasanow, Wagner227

and their collaborators [14, 18, 20]. One of these techniques is based on partitioning228

particles into two groups with a cutting plane whose normal vector is in the direction229

of the eigenvector corresponding to the largest eigenvalue of the covariance matrix of230

the particles [18, 20]. This partitioning method is performed iteratively on each of the231

partitioned groups using the group’s covariance matrix. The iteration continues until232

the product of the total weight and the standard deviation of the particle speeds within233

each group is minimized, which results in a roughly uniform number of stochastic234

particles in each group. We use this clustering method for the results in this paper.235

Rjasanow and Wagner also proposed several stochastic and deterministic particle236

reduction schemes to replace each group by a group with a small number of particles.237

These schemes are based on conserving a specific set of moments of the distribution238

within each group. The details of these reduction schemes can be found in [18, 20].239

We are interested in deterministic reduction schemes that conserve as many mo-240

ments as possible, so that the structure of the velocity pdf is preserved. In this paper,241

we propose a particle reduction scheme that conserves all the moments of the velocity242

pdf up to second order, given in Table 1, together with the raw and central heat flux,243

which are the most physically relevant third order moments. The raw heat flux vector,244

h, is computed relative to the origin, while the central heat flux, q, is relative to the245

drift velocity, V. They are given by246

(3.1) h =
1

2

m∑
i=1

gi vi |vi|2 and q =
1

2

m∑
i=1

gi (vi −V) |vi −V|2.247

In the following discussion, when we refer to third order moments we simply mean248

the raw and central heat flux.249

The reduction scheme of Rjasanow and Wagner that preserves the most moments250

and is closest to our scheme is the one that preserves the total weight, momentum,251
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Table 1
Moments of the velocity pdf

Moment order Raw Moment Symbol Central Moment Symbol
Zero Total Weight % — —
First Momentum %V — —

Second Momentum Flux Tensor Π Pressure Tensor P

energy, and central heat flux [18, 20]. With this scheme, although the central heat flux252

is conserved within each group, the momentum flux tensor and the pressure tensor253

are not. Only the total energy, which is the trace of the momentum flux tensor, is254

conserved. As a consequence, the raw heat flux for each group is not conserved, and255

therefore, the raw and central heat flux of the entire system are also not conserved.256

To conserve both the raw and central moments of a group, it is necessary and257

sufficient to conserve either of these moments and all of the lower order moments.258

Because of the additive property of raw moments, if a raw moment is conserved within259

each group then it must also be conserved for the entire system. In particular, since the260

total weight and momentum are raw moments, conservation of % and %V within each261

group ensures that these two moments are conserved for the entire system. Therefore,262

if we could conserve the total weight, momentum, pressure tensor and central heat263

flux within each group, then all of the raw and central moments up to the second264

order together with the raw and central heat flux would be conserved for the entire265

system.266

We formalize this idea as follows. Let m be the number of stochastic particles in267

the system, and suppose that the particles have been partitioned into n̂ groups with268

ml stochastic particles in the l-th group, Gl. Let gl,i and vl,i denote the weight and269

velocity of the i-th particle in the l-th group. Then, the total weight, %l, momentum,270

%l Vl, momentum flux tensor, Πl, and raw heat flux, hl, for the l-th group are given271

by272

(3.2)

%l =

ml∑
i=1

gl,i, %l Vl =

ml∑
i=1

gl,i vl,i,

Πl =

ml∑
i=1

gl,i vl,i v
T
l,i, hl =

1

2

ml∑
i=1

gl,i vl,i |vl,i|2,
273

where Vl is the drift velocity of the l-th group. The pressure tensor, Pl, and the274

central heat flux, ql, of the l-th group are given by275

(3.3)

Pl =

ml∑
i=1

gl,i (vl,i −Vl) (vl,i −Vl)
T and ql =

1

2

ml∑
i=1

gl,i
(
vl,i −Vl

) ∣∣vl,i −Vl

∣∣2.276

The energy, El, and temperature, Tl, are given by277

(3.4) El =

ml∑
i=1

gl,i |vl,i|2, and 3 %l Tl =

ml∑
i=1

gl,i |vl,i −Vl|2,278

where the quantity on the right hand side of the formula for Tl is the trace of the279

pressure tensor. The energy is given in terms of the temperature by280

(3.5) El = %l |Vl|2 + 3 %l Tl.281
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The raw moments of the entire system are given by282

(3.6) % =

n̂∑
l=1

%l, %V =

n̂∑
l=1

%l Vl, Π =

n̂∑
l=1

Πl, and h =

n̂∑
l=1

hl.283

Here % is the total weight, V is the drift velocity, Π is the momentum flux tensor and284

h is the raw heat flux of the entire system.285

The relationship between the raw and central second order moments is given by286

(3.7) Pl = Πl − %l Vl V
T
l .287

Using this relationship, we observe that for a reduction scheme to preserve both of the288

second order moments, Pl and Πl, it is sufficient to conserve the total weight, %l, the289

momentum, %l Vl, and either Pl or Πl. Since the raw moments are additive (see (3.6)),290

conservation of the total weight, momentum and momentum flux tensor within each291

group leads to the conservation of the these moments for the entire system. Using (3.7)292

for the entire system, we conclude that the pressure tensor for the entire system is also293

conserved. Therefore, a reduction scheme that conserves the total weight, momentum294

and either of the second order moments for each group leads to the conservation of295

the moments up to second order for the entire system.296

Similarly, the relationship between the raw and central third order moment can297

be determined using (3.2), (3.4), and (3.7) giving the equation,298

(3.8) ql = hl − Pl Vl −
1

2
%l Vl

∣∣Vl

∣∣2 − 3

2
%l Tl Vl,299

which relates the raw and central heat flux to each other via the lower order moments.300

As above, to conserve both the raw and central moments of a group up to third order301

it is sufficient to conserve the total weight, momentum, pressure tensor, and either of302

the third order moments of the group. Similarly, using the additivity property of the303

raw moments, and the relationships between the moments given by (3.7) and (3.8)304

for the entire system, the pressure tensor and central heat flux of the system are also305

conserved together with all the raw moments. This verifies our claim that to conserve306

the raw and central moments of the system up to the third order during a reduction307

process, it is sufficient to conserve the total weight, momentum, pressure tensor and308

central heat flux of each group.309

Next, we present a novel particle reduction scheme that conserves the total weight,310

momentum, pressure tensor, and central heat flux in a group. First, we outline the idea311

behind the conservation of these moments. Before describing this scheme, we briefly312

recall that for the reduction scheme that preserves the total weight and momentum of a313

group, we simply replace all the stochastic particles in the group by a single stochastic314

particle with the given weight and momentum [20]. The next higher order moments315

are the momentum flux tensor and the pressure tensor. Since, the pressure tensor316

is a 3 × 3 real symmetric positive semi-definite matrix, it can be diagonalized using317

an orthonormal basis of normalized eigenvectors, with the non-negative eigenvalues318

as its diagonal entries. This simplifies the problem, as we only have to conserve the319

diagonal entries of the pressure tensor. To conserve the pressure tensor in this new320

orthonormal basis, each group can be replaced by a group with between one and three321

pairs of particles. The number of pairs of particles depends on the number of nonzero322

eigenvalues. Specifically, we choose to assign an equal portion of the total weight323

to each pair of particles. For each pair, the velocity of one of the particles relative324
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to the drift velocity is chosen to be in the direction of an eigenvector with nonzero325

eigenvalue, while the other particle moves in the opposite direction. The magnitudes326

of these velocity pairs relative to the drift velocity of the group are equal, and are327

chosen to ensure the conservation of each of the diagonal entries of the pressure tensor328

in the new basis, which leads to the conservation of the pressure tensor. The total329

weight and momentum of the group are conserved as a consequence of the choices we330

made.331

To additionally conserve the raw and central heat flux, we utilize a degree of332

freedom in the choice of weights and in the magnitudes of the velocities relative to333

the drift velocity. We choose the sum of the weights of the particles for each pair to be334

an equal portion of the total weight. For each pair, the weights of the two particles and335

the magnitudes of their velocities relative to the drift velocity are not required to be336

equal. These quantities are determined by solving the conditions required to conserve337

the weight, momentum, pressure tensor, and central heat flux in the new basis. Once338

the post reduction velocities are determined, the transformation of these velocities to339

the standard basis leads to the conservation of the moments in the standard basis.340

The following theorem summarizes our new particle reduction scheme for the341

conservation of the total weight, momentum, pressure tensor, and central heat flux of342

a group.343

Theorem 3.1. Let Gl be a group of stochastic particles. Suppose that the pres-344

sure tensor, Pl, has k non-zero eigenvalues, λ1, . . . , λk, for some k ∈ {1, 2, 3}, and345

an associated orthonormal set of eigenvectors, Θ1, . . . ,Θk, with the direction of Θi346

chosen so that q̂l,i = ΘT
i ql > 0. Let G̃l be the reduced group of 2k stochastic particles347

whose weights and velocities, (ṽi, g̃i), for i = 1, . . . , 2k are given by348

(3.9)

ṽi = Vl + γi

√
k λi
%l

Θi, g̃i =
%l
k

1

1 + γ2i
,

ṽi+k = Vl −
1

γi

√
k λi
%l

Θi, g̃i+k =
%l
k

γ2i
1 + γ2i

, for i = 1, . . . , k

349

where,350

(3.10) γi =

√
%l q̂l,i
√
k λ

3
2
i

+

√
1 +

%l q̂2l,i
k λ3i

, for i = 1, . . . , k.351

Then, G̃l preserves the total weight, momentum, pressure tensor, and central heat flux352

of Gl, which leads to the preservation of all the moments up to the second order as353

well as the raw and central heat flux of Gl.354

Proof. We consider the case where the eigenvalues of the pressure tensor are all355

nonzero. We let the reduced group, G̃l, consist of three pairs of particles, with each356

pair of the form,357

(3.11)

ṽi = Vl + αi Θi, ṽi+3 = Vl − αi+3 Θi, and g̃i + g̃i+3 =
%l
3
, i ∈ {1, 2, 3},358

for some αi ∈ R and Θi ∈ S2. We derive the conditions on the unknown parameters,359

g̃i, αi, and Θi, so as to conserve the total weight, momentum, pressure tensor and360

heat flux.361
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By construction, the total weight is conserved,362

(3.12)

6∑
i=1

g̃i = %l.363

Similarly, if we impose the condition364

(3.13) g̃i αi = g̃i+3 αi+3, for i ∈ {1, 2, 3},365

we find that the momentum of the group is conserved, since366

(3.14)

6∑
i=1

g̃i ṽi =

3∑
i=1

g̃i(Vl + αi Θi) + g̃i+3(Vl − αi+3 Θi) = %l Vl.367

Next, to conserve the pressure tensor, Pl, we use the fact that it is a 3 × 3 real368

symmetric matrix with positive eigenvalues. Therefore, there is a diagonal matrix369

D = diag[λ1, λ2, λ3] and an orthonormal matrix Q = [Θ1,Θ2,Θ3] such that370

(3.15) D = QT PlQ.371

That is, each {λi,Θi} is an eigenpair of the matrix Pl. The condition, P̃l = Pl,372

that the reduction scheme preserves the pressure tensor is therefore equivalent to the373

condition374

(3.16)

D = QT
[ 6∑
i=1

g̃i
(
ṽi −Vl

)(
ṽi −Vl

)T ]
Q

=

3∑
i=1

(
g̃i αi

2 + g̃i+3 α
2
i+3

) (
QT Θi

) (
QT Θi

)T
.

375

Therefore, to conserve the pressure tensor, we require that376

(3.17) g̃i αi
2 + g̃i+3 α

2
i+3 = λi, for i ∈ {1, 2, 3}.377

In the basis of eigenvectors, the central heat flux, q̂l, is given by378

(3.18) q̂l = QT ql.379

As in the statement of the theorem, we choose the direction of Θi so that the i-th380

component, q̂l,i = ΘT
i ql, of q̂l is positive. To conserve the central heat flux in the381

new basis, we have382

(3.19) q̂l =
1

2

3∑
i=1

(
g̃i α

3
i − g̃i+3 α

3
i+3

)
QTΘi =

1

2

3∑
i=1

(
g̃i α

3
i − g̃i+3 α

3
i+3

)
ei,383

and we obtain384

(3.20) q̂l,i =
1

2

[
g̃i α

3
i − g̃i+3 α

3
i+3

]
.385

Next, to solve for αi and g̃i, we apply a technique used by Rjasanow and Wagner386

[18, 20] . We introduce a new parameter, γi, and express αi as387

(3.21) αi = γi

√
3λi
%l

.388
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Substituting (3.13) into (3.17) we obtain389

(3.22) λi =
g̃i
g̃i+3

α2
i

[
g̃i+3 + g̃i

]
.390

Substituting the expression for αi given by (3.21), and using (3.11) for the sum of391

weights, we obtain392

(3.23)
g̃i
g̃i+3

γ2i = 1.393

Using this relationship in (3.11), we obtain394

(3.24)

g̃i =
%l
3

1

1 + γ2i
, αi = γi

√
3λi
%l

, and g̃i+3 =
%l
3

γ2i
1 + γ2i

, αi+3 =
1

γi

√
3λi
%l

.395

To determine γi, we substitute (3.24) into (3.20) to obtain396

(3.25) g̃i α
3
i − g̃i+3 α

3
i+3 =

√
3

%l

λ
3
2
i

γi

(
γ2i − 1

)
.397

Now by (3.20), q̂l,i = 1
2

[
g̃i α

3
i − g̃i+3 α

3
i+3

]
> 0. Therefore γi > 1 and398

(3.26) q̂l,i =
1

2

√
3

%l

λ
3
2
i

γi

(
γ2i − 1

)
=⇒ γ2i − 2

√
%l q̃i
√

3λ
3
2
i

γi − 1 = 0.399

Solving for the positive root, we obtain400

(3.27) γi =

√
%l q̂l,i
√

3λ
3
2
i

+

√
1 +

%l q̂2l,i
3λ3i

.401

Therefore, the post reduction particles are given by (3.9) and (3.10) as required.402

If the pressure tensor has at least one zero eigenvalue, the moments can be con-403

served with fewer than six particles. The reason is that there is no need to introduce404

particles whose heat flux is in the direction of the eigenvectors corresponding to the405

zero eigenvalues. In this situation, the result follows similarly to the calculations406

above.407

4. Theoretical convergence of SWPM with the new reduction scheme.408

In this section, we show that our new reduction scheme satisfies the assumptions409

in Wagner’s convergence theorem for the SWPM [20, Thm. (3.22)]. This theorem410

provides a collection of assumptions which guarantee that the sequence of empirical411

measures of the Markov process produced by the SWPM converges to the weak so-412

lution of the Boltzmann equation as n → ∞. These assumptions on the reduction413

scheme are given by [20, eq. (3.162)], and [20, eq. (3.164)]. According to Rjasanow414

and Wagner, assumption [20, eq. (3.162)] assures that the reduction is sufficiently415

precise, and [20, eq. (3.164)] restricts the increase in energy during reduction. Since416

the energy is conserved in our new reduction scheme, the second assumption related417

to the energy is satisfied. For assumption [20, eq. (3.162)], the arguments given by418

Rjasanaw and Wagner for their deterministic reduction schemes also apply to our new419

deterministic reduction scheme. Therefore, for this assumption to hold for our new420
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12 S. LAMA, J. ZWECK, AND M. GOECKNER

reduction scheme, it is sufficient to show that the inequality given by [20, eq. (3.273)]421

holds. This inequality states that422

(4.1)

∣∣∣∣ ∫
Zl

Φ(z̃l) pred(zl; dz̃l)− Φ(zl)

∣∣∣∣ ≤ ||ϕ||L[ ml∑
i=1

gi
∣∣Vl − vi

∣∣+ %l
√

3Tl

]
.423

Here,424

(4.2) zl = {(g1,v1), (g2,v2), . . . , (gml ,vml)}425

is the state of a group Gl prior to reduction, z̃l is the post-reduction state, and426

pred(zl; dz̃l) is a measure that gives the probability that the post-reduction state lie427

in the volume element, dz̃l. The function Φ, which approximates the velocity pdf, is428

given by429

(4.3) Φ(zl) =

ml∑
i=1

gi ϕ(vi),430

for the particles in the group Gl. Here ϕ is an arbitrary test function. The norm for431

the test function, ||ϕ||L, is defined as432

(4.4) ||ϕ||L = max

{
||ϕ||∞, sup

v 6=w∈R3

|ϕ(v)− ϕ(w)|
|v −w|

}
.433

In the inequality (4.1),

∫
Zl

Φ(z̃l) pred(zl; dz̃l) gives the expectation of Φ for the reduced434

system.435

For our new deterministic reduction scheme, in the spatially homogeneous case,436

for each group only one state is possible after reduction. Therefore, in the case where437

all three eigenvalues of the pressure tensor are positive, pred(zl; dz̃l) = δJred(zl)(dz̃l),438

where [Jred(zl)]i = (ṽi(zl), g̃i(zl)), for i = 1, . . . , 6, is the post reduction state given439

by Theorem 3.1. Therefore,440

(4.5)

∫
Zl

Φ(z̃l) pred(zl; dz̃l) = Φ(Jred(z̃l)) =

6∑
j=1

g̃j ϕ(ṽj).441

Since

6∑
j=1

g̃j = %l, and applying the triangle inequality, we obtain442

(4.6)

∣∣∣∣ ∫
Zl

Φ(z̃l) pred(zl; dz̃l)− Φ(z)

∣∣∣∣ =

∣∣∣∣ 6∑
j=1

g̃j ϕ(ṽj)−
ml∑
i=1

gi ϕ(vi)

∣∣∣∣
≤

6∑
j=1

∣∣∣∣ g̃j%l
ml∑
i=1

gi ϕ(ṽj)−
g̃j
%l

ml∑
i=1

gi ϕ(vi)

∣∣∣∣
≤

6∑
j=1

g̃j
%l

ml∑
i=1

gi

∣∣∣∣ϕ(ṽj)− ϕ(vi)

∣∣∣∣
≤ ||ϕ||L

6∑
j=1

g̃j
%l

ml∑
i=1

gi

∣∣∣∣ṽj − vi

∣∣∣∣,

443
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where the final inequality follows from (4.4). Furthermore, using (3.11), the triangle444

inequality, and the fact that

ml∑
i=1

gi = %l, we obtain445

(4.7)

6∑
j=1

g̃j
%l

ml∑
i=1

gi

∣∣∣∣ṽj − vi

∣∣∣∣
≤

ml∑
i=1

gi
∣∣Vl − vi

∣∣+

6∑
j=1

g̃j αj

=

ml∑
i=1

gi
∣∣Vl − vi

∣∣+

( 6∑
j=1

g̃2j α
2
j + 2

6∑
j=1

∑
k>j

g̃j g̃k αj αk

) 1
2

≤
ml∑
i=1

gi
∣∣Vl − vi

∣∣+

( 6∑
j=1

g̃2j α
2
j +

6∑
j=1

∑
k>j

g̃j g̃k (α2
j + α2

k)

) 1
2

=

ml∑
i=1

gi
∣∣Vl − vi

∣∣+

(
%l

6∑
j=1

g̃j α
2
j

) 1
2

=

ml∑
i=1

gi
∣∣Vl − vi

∣∣+ %l
√

3Tl.

446

Here, the final equality is obtained from (3.4) and (3.11). Therefore, the desired in-447

equality (4.1) holds for our new reduction scheme, and Wagner’s convergence theorem448

applies in this context.449

5. Numerical results. In this section, we discuss our numerical results. The450

algorithm was implemented in C++ and all simulations were performed on a desktop451

machine with a 3.6 GHz single processor. We verified that the total times for the452

particle collisions and for the clustering and particle reductions both scale linearly453

with the initial number of computational particles, m0. The time taken to simulate454

the clustering and particle reductions was approximately four times larger than the455

time taken to simulate the particle collisions. However, as we will show in Table 3,456

for the results in Figures 1 to 3 below, the total computational time is only about 30457

seconds for N = 100 ensembles with m0 = 10, 240 particles per ensemble.458

First, to numerically verify the conclusions of Theorem 3.1, we study the sum459

over all the groups of the reduction errors for the raw and central heat flux. For this460

study, we consider an initial Maxwellian distribution with temperature, T = 1, and461

drift velocity, V = 〈0, 0, 0〉. We used a single ensemble to obtain these results, and462

the initial number of computational particles is chosen to be m0 = 10,240. Once the463

number of computational particles reaches 4m0, we reduce it to m̃ ≈ m0

4 , which was464

the strategy that produced the largest errors for the deterministic reduction schemes465

of Rjasanow and Wagner [18]. We chose this strategy to demonstrate that our method466

performs well even under this condition.467

In Table 2, we compare three reduction schemes. All three schemes conserve468

the total weight and momentum, and in addition to these moments, the reduction469

schemes conserve the moments associated to their names. The first two schemes,470

energy conservation, and energy and central heat flux conservation (Ct. HF), are471

the reduction schemes of Rjasanow and Wagner, and the third one is our reduction472

scheme which conserves the pressure tensor (PT) and central heat flux (Ct. HF). To473
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14 S. LAMA, J. ZWECK, AND M. GOECKNER

Table 2
Maximum average relative errors in the central and raw heat flux for the three reduction schemes.

Reduction Scheme
Central Heat
Flux Error

Raw Heat Flux
Error

Energy 1 0.01743
Energy and Central Heat Flux (Ct. HF) 3.00844e-15 0.015072

Pressure Tensor (PT) and Central Heat Flux (Ct. HF) 2.12406e-15 6.81888e-16

compare these schemes, we compute the relative 2-norm errors for each of the third474

order moments of each group and take their average over all the groups, that is we let475

(5.1) E =
1

#Grps

#Grps∑
l=1

||mAfter,l −mBefore,l||2
||mBefore,l||2

.476

We obtained these average relative errors for the first ten reductions, and show the477

maximum of these errors in Table 2. The errors for the pressure tensor and central478

heat flux scheme are smaller than 10−14, which is negligible. However, in the third479

column of the table, we observe that for the energy and central heat flux scheme the480

raw heat flux error is about 2 × 1013 times larger than that for the pressure tensor481

and central heat flux scheme. These results support the theory in section 3 that the482

energy and central heat flux scheme only conserves the central heat flux in each group,483

and does not conserve the raw heat flux, while the pressure tensor and central heat484

flux scheme conserves both. Furthermore, the energy scheme has the largest error for485

both third order moments. Since this scheme replaces a group by two particles with486

equal weights and opposite velocities relative to the drift velocity, the central heat487

flux of the group after reduction is zero. This observation explains why the relative488

error in the central heat flux is 1 for the energy reduction scheme.489

In [20], Rjasanow and Wagner observed that the higher order moments of a dis-490

tribution are conserved statistically when averaged over a large number of ensembles,491

even if the reduction scheme only conserves the lower order moments. However, they492

found that the existing deterministic reduction schemes require a larger initial num-493

ber of computational particles for the convergence of the scalar fourth order moment494

than for the lower moments. To examine this, for each reduction scheme we studied495

the convergence of (1,1)-component of the momentum flux tensor, Π1,1, the second496

component of the raw heat flux, h2, and the scalar fourth order moment,497

(5.2) s =

m∑
i=0

gi|vi|4,498

as we increase m0. For this study, we chose the initial condition to be a mixture of499

Maxwellian distributions, since for this pdf there is an analytical formula for the given500

moments as a function of time, t [20]. The initial distribution is given by501

(5.3) f0(v) = αMV1,T1
(v) + (1− α)MV2,T2

(v),502

where MV1,T1(v) and MV2,T2(v) are Maxwellian distributions with drift velocities503

V1 and V2, and temperatures T1 and T2, respectively. We chose α = 0.5, V1 =504

〈−2, 2, 0〉, V2 = 〈2, 0, 0〉, and T1 = T2 = 1. We performed two sets of simulations in505

which we studied the short term (transient) behavior of s in the time interval [0, 3].506

For this study, we calculated the relative error of the moments and the half-width of507
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the 99.9% confidence interval as a function of time in the interval [0, 3]. The relative508

error for a moment m is given by509

(5.4) E =
|manal −m|
|manal|

,510

where m =
1

N

N∑
i=1

mi is the average of the simulated moments over the N ensembles.511

Similarly, the half-width of the relative confidence interval is given by512

(5.5) CI =
z(1−α2 )

|manal|

√
σ2

N
,513

where σ2 =

∑N
i=1

(
mi −m

)2
N − 1

is the variance of the simulated moments and z(1−α2 )514

is the z-score for the confidence interval with α = 10−3. A statistical simulation515

computes a moment accurately if E < CI, that is if there is a high probability that516

manal lies in the confidence interval centered at m, and that this confidence interval is517

relatively narrow.518

In the first set of simulations, we used N = 500 ensembles and various initial519

numbers of computational particles, m0. In the left column of Figure 1, we show520

the relative error, E, in (5.4) and confidence interval, CI, in (5.5) at time t = 3 for521

the (1, 1)-component of the momentum, Π1,1, (top), the second component of the522

raw heat flux, h2, (middle), and the scalar fourth-order moment, s, (bottom). The523

percentage relative error, for the energy, the energy and central heat flux, and the524

pressure tensor and central heat flux reduction schemes are shown using the symbols525

in the legends. The half-width of the relative confidence intervals are shown using the526

corresponding vertical lines. These quantities are plotted for the different values of527

m0, which is displayed using a logarithmic scale. For each value of m0, we have offset528

the results for the three reduction schemes from each other to aid comprehension.529

First, we observe that for each moment, the confidence intervals primarily depend530

on m0 rather than on the reduction scheme. Furthermore, with one slight exception,531

the errors for Π1,1 and h2 are within the confidence intervals, even for a small number532

of computational particles. For Π1,1, this result is to be expected since all three533

reductions schemes are designed to conserve momentum. However, as we saw in534

Table 2, the energy and energy and central heat flux reduction schemes do not preserve535

the raw heat flux. Therefore, the accuracy of the computation of h2 with these two536

schemes is simply due to statistical averaging over the 500 ensembles. Significantly, in537

most cases the errors for Π1,1 and h2 are smaller with the pressure tensor and central538

heat flux scheme than with the other two reduction schemes.539

The main advantage to be gained from using the new pressure tensor and heat540

flux reduction scheme can be seen in the results for the scalar fourth-order moment,541

s (see the bottom left panel of Figure 1). With our method, the error in s lies within542

the confidence interval for m0 ≥ 1,024. However, with the other two methods the543

errors are larger than the width of the confidence interval, even for m0 = 10,240.544

Therefore, the energy conservation, and energy and central heat flux conservation545

reduction schemes require more than 10 times the initial number of computational546

particles as the pressure tensor and heat flux conservation scheme to approximate the547

scalar fourth-order moment with the same degree of accuracy. As we see in Table 3,548

this requires at least seventeen times the computational time.549
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Fig. 1. Percentage relative error, E, in (5.4) at time t = 3 for selected moments, m, of the
velocity pdf. We compare the performance of the SWPM with the three different reduction schemes
shown in the legends. We show results for the (1, 1)-component of the momentum, Π1,1, (top row),
the second component of the raw heat flux, h2, (middle row), and the scalar fourth-order moment,
s, (bottom row). We plot the errors using symbols and the half confidence intervals with vertical
lines, so that E < CI when the symbol lies on the line. In the left column, we plot E as a function
of the number of particles, m0, per ensemble for N = 500 ensembles. In the right column, we plot
E as a function of m0 when N is chosen so that N ×m0 = 1, 240, 000.

To further examine how accurately the three reductions schemes compute the550

scalar fourth-order moment, in Figure 2 we plot the evolution of s as a function of551

time, together with 99.9% confidence intervals. The numerical results are shown with552

red-dashed lines and the true values are shown with solid blue lines. The results for553
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Fig. 2. Evolution of the scalar fourth order moment, s, as a function of time together with
99.9% confidence intervals. In the different rows we show the results for different initial numbers
of computational particles, m0, per ensemble. We used N = 500 ensembles in all the panels. We
show the results for the energy scheme (left column), energy and central heat flux scheme (middle
column), and pressure tensor and central heat flux scheme (right column).
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Table 3
Total computational time for the simulation results shown in Figure 1. These results were

obtained with the pressure tensor and central heat flux scheme. The computational times for the
two reduction schemes of Rjasanow and Wagner were similar (≈ ±10%).

N = 500 N ×m0 = 1, 240, 000
m0 t (sec) t (sec)
256 2.61 20.85
512 6.06 22.02

1,024 13.76 24.93
2,048 31.26 31.26
10,240 205.56 39.05

the energy and the energy and central heat flux reduction schemes are shown in the554

left and middle columns. The numerical results are visually close to the true values555

only for m0 = 10, 240 (bottom left and middle panels). On the other hand, with the556

pressure tensor and central heat flux scheme (right column), the numerical results557

are reasonably accurate across the entire time range for m0 = 1, 240. In particular,558

examining each column in turn, we see that the convergence of s is significantly faster559

for the pressure tensor and central heat flux conservation scheme, than for the other560

two reduction schemes.561

To summarize our conclusions so far, the new reduction scheme provides im-562

proved accuracy at a significantly reduced computational cost. To provide additional563

evidence for this conclusion, we performed a second set of simulations where we fixed564

the total number of computational particles, m0 × N , to be 1,024,000. This value565

was kept constant to obtain approximately equal sized confidence intervals for all the566

simulations. The results for these simulations are shown in the right column of Fig-567

ure 1 and in Figure 3. Comparing the errors and the half width of the confidence568

intervals for Π1,1 in Figure 1 (top right panel), we observe that our scheme is accurate569

even with m0 = 256, while the other two schemes require a larger initial number of570

computational particles. On the other hand, for h2 the results obtained with all three571

reduction schemes are acceptable for all the values of m0. In the case of the fourth572

order moment, for both reduction schemes of Rjasanow and Wagner, the error lies573

within the confidence interval only for m0 = 10,240. On the other hand, the errors574

for our scheme lies within the confidence intervals for m0 ≥ 1, 024. In the right col-575

umn of Figure 1, for each moment, the confidence intervals only depend on the total576

number of computational particles, m0×N , and not on m0 or the choice of reduction577

scheme. Furthermore, in Table 3 we see that as m0 decreases the computational time578

decreases. As a consequence, for each moment, for the same level of accuracy the579

computational time for our reduction scheme is significantly less than that for the580

other two reduction schemes. We also observe this phenomenon in Figure 3. For581

example, we observe the same degree of accuracy in the fourth order moment for our582

reduction scheme with m0 = 1,024 and N = 1,000 (the right panel in the third row)583

as for the other two methods with m0 = 10,240 and N = 100 (the left and middle584

panels in the last row). However, the computational time of 43 seconds for the two585

reduction schemes of Rjasanow and Wagner is reduced by 42% to 25 seconds for our586

scheme.587

6. Conclusions. We have confirmed that the reduction scheme of Rjasanow588

and Wagner that conserves total weight, momentum, energy and central heat flux of589

a group does not conserve the raw heat flux in each group. Consequently, the raw and590

central heat flux of the entire system are not conserved. We resolved this problem by591
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Fig. 3. Evolution of the scalar fourth order moment, s, as a function of time, together with
99.9% confidence intervals, for different initial numbers of computational particles, m0, per ensemble
and different number of ensembles, N . For these results the total number of computational particles,
m0 × N , was kept constant. We show the results for the energy scheme (left column), energy and
central heat flux scheme (middle column), and pressure tensor and central heat flux scheme (right
column).
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devising a new reduction scheme that conserves the total weight, momentum, pressure592

tensor and heat flux within each group. Conservation of these moments within a group593

results in the conservation of all of the moments up to the second order, and both594

raw and central heat flux among the third order moments of a group. This further595

leads to the preservation of these moments for the entire system.596

To examine the accuracy of our new reduction scheme, we performed simulation597

studies to analyze the convergence of Π1,1, h2, and the scalar fourth order moment598

for the existing and new reduction schemes. The new reduction scheme leads to599

the convergence of these moments, particularly the scalar fourth order moment, with600

significantly less computational cost compared to the existing deterministic reduction601

schemes. This shows that the preservation of additional moments in the new reduction602

scheme conserves the higher moments with better accuracy, and also minimizes the603

reduction error.604

Although the conservation of higher-order moments reduces the systematic error605

introduced by the reduction process, the clustering technique must also be carefully606

designed in order to accurately and efficiently compute the low-probability tails of607

the velocity pdf. Specifically, since the tails occupy a proportionately large volume608

of phase space, we need to ensure that particles in the tails that are assigned to the609

same group are sufficiently close together. In a forthcoming article we will use the610

proof of the convergence theorem for the SWPM [20] to develop such a clustering611

algorithm. In combination with the reduction scheme introduced in this paper, we612

will demonstrate that this leads to a more efficient method for the computation of613

tail functionals.614
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