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Abstract Quartz-enhanced photoacoustic spectroscopy
(QEPAS) sensors are based on a recent approach to pho-
toacoustic detection which employs a quartz tuning fork
as an acoustic transducer. These sensors enable detection
of trace gases for air quality monitoring, industrial pro-
cess control, and medical diagnostics. To detect a trace
gas, modulated laser radiation is directed between the
tines of a tuning fork. The optical energy absorbed by
the gas results in a periodic thermal expansion which
gives rise to a weak acoustic pressure wave. This pres-
sure wave excites a resonant vibration of the tuning fork
thereby generating an electrical signal via the piezoelec-
tric effect.

This paper describes a theoretical model of a QEPAS
sensor. By deriving analytical solutions for the partial
differential equations in the model, we obtain a formula
for the piezoelectric current in terms of the optical, me-
chanical, and electrical parameters of the system. We use
the model to calculate the optimal position of the laser
beam with respect to the tuning fork and the phase of the
piezoelectric current. We also show that a QEPAS trans-
ducer with a particular 32.8 kHz tuning fork is 2-3 times
as sensitive as one with a 4.25 kHz tuning fork. These
simulation results closely match experimental data.
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1 Introduction

Sensor systems that detect and quantify the concentra-
tion of specific trace gases will become essential compo-
nents of urban air quality monitoring, industrial process
control, and medical diagnostics using breath biomark-
ers [1,2,3]. Recently, there has been a growing interest in
quartz-enhanced photoacoustic spectroscopy (QEPAS)
sensors which use a quartz tuning fork as a resonant
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acoustic transducer [4]. A QEPAS sensor detects the
weak acoustic pressure wave that is generated when op-
tical radiation is absorbed by a trace gas. This pressure
wave excites a resonant vibration of a quartz tuning fork
(QTF) which is then converted into an electric signal
(charge separation on the electrodes of the tuning fork)
due to the piezoelectric effect. Then a transimpedance
amplifier is usually used to make a virtual short-circuit
between the electrodes and to measure the generated
current, which is proportional to the concentration of
the gas. Experimental studies show high sensitivity of
QEPAS which, combined with a miniature sensor size
and immunity to environmental acoustic noise, makes
this technology an attractive alternative to other trace
gas sensing methods [1,5,6].

The majority of reported QEPAS-based sensor con-
figurations include a spectrophone (the module for de-
tecting laser-induced sound) consisting of a QTF and a
microresonator composed of a pair of thin tubes [4,5].
Experiments have shown that the microresonator yields
a signal gain of 10 to 20. However, there are some sit-
uations in which it is advantageous to use the simplest
spectrophone configuration consisting of the QTF alone.
These situations include the use of optical sources with
low spatial radiation quality (multimode lasers, LEDs),
or when extremely local sensing is needed. The theoret-
ical analysis developed in this paper concerns this sim-
plest QEPAS spectrophone. The theory will enable fu-
ture comparisons between QEPAS transducers based on
various commercially available QTFs without perform-
ing actual gas sensing experiments.

The theoretical analysis of QEPAS sensors relies on
the theory of photoacoustic spectroscopy [7,8,9] and the
mechanical and piezoelectric properties of quartz tuning
forks [10,11,12]. Miklos et al. [9] describe experimen-
tal and theoretical investigations of photoacoustic signal
generation in which a gas-filled resonant acoustic cavity
(rather than a quartz tuning fork) is used to accumu-
late the energy from a photoacoustic signal. Karräi and
Grober [10] discuss a theoretical model for the applica-
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tion of tuning fork sensors to atomic-force and optical
near-field microscopy. In these applications the vibra-
tion of the tuning fork is induced by a point force con-
centrated at the tip of the tuning fork, whereas in a
QEPAS sensor the pressure-induced driving force is dis-
tributed over the inner and outer surfaces of each tine.
Until now, the only theoretical model of a QEPAS sen-
sor is that of Wojcik et al. [13] who studied a trace gas
sensor that combines an amplitude-modulated quantum
cascade laser with a QEPAS sensor. However, they did
not use their model to quantify how the amplitude or
phase of the received electrical signal depends on the
system parameters.

In this paper we describe a theoretical model for
a wavelength-modulated QEPAS sensor currently being
developed by Kosterev et al. [1,4,5]. Our QEPAS model
consists of three stages. First, we model the propaga-
tion of the acoustic wave in space. We calculate an ex-
plicit formula for the acoustic pressure wave by using the
cylindrical symmetry of the laser beam and the narrow
width of the tuning fork resonance to reduce the inho-
mogeneous wave equation to a Bessel equation. This ap-
proach is much simpler than that of Wojcik et al. [13]
who relied on the three-dimensional Green’s function
solution of the wave equation. The solution we derive
shows that the amplitude of the pressure wave is pro-
portional to the laser modulation frequency. Second, we
use the Euler-Bernoulli equation forced by the acoustic
pressure to model the resonant vibration of the tines of
the tuning fork. Finally, we use well known electrome-
chanical relationships for quartz tuning forks to calculate
the piezoelectric current generated by this mechanical
vibration [12]. We note that Wojcik et al. [13] give a
brief description of the second and the third stages of
the model.

To validate the model and study the dependence of
the piezoelectric signal strength on the system param-
eters we use the theory and experiments to determine
the amplitude and phase of the piezoelectric current as
functions of the position of the laser beam. Our model
shows that the theoretical calculation and experimental
measurements of a normalized amplitude function and of
the phase are in very good agreement. However, in ab-
solute units the theoretically calculated signal strength
is about two times smaller than that measured in exper-
iments. One possible reason for this discrepancy is that
we did not include the effect that the tuning fork has on
the pressure wave solution.

We also investigate how the sensitivity of the QEPAS
transducer is affected by the resonance frequency of the
tuning fork by comparing results from particular 32.8 kHz
and 4.25 kHz tuning forks. Our theoretical and experi-
mental results show that the piezoelectric signal strength
obtained using the 32.8 kHz tuning fork is 2-3 times as
large as that obtained from the 4.25 kHz tuning fork.

In Section 2, we describe our theoretical model for
a QEPAS sensor and derive analytical solutions of the

partial differential equations involved in the model. In
Section 3, we validate the model by comparison to exper-
iments and study the dependence of the signal strength
on the system parameters. Finally, in Section 4 we sum-
marize our results and briefly discuss future extensions
of the model.

2 Mathematical model

Several experimental configurations for QEPAS sensors
are discussed in [4]. In this paper we study the config-
uration in which the laser beam is focused between the
tines of the tuning fork and there is no gas-filled acoustic
microresonator cavity. We now explain the three stages
of a simple model of a QEPAS sensor.

2.1 Model of the optically generated acoustic wave

We model the acoustic pressure wave generated by the
interaction of the laser beam with the trace gas by re-
garding it as a wave that propagates in all of space,
and in particular assume that it is not influenced by the
tuning fork. As a first approximation this assumption is
reasonable since the wavelength of the pressure wave is
approximately 10−2 m, which is large compared to the
thickness and width of the tuning fork which are both
less than 10−3 m. The acoustic pressure, P , in space
satisfies the acoustic wave equation

∂2P

∂t2
− c2∆P = S, (1)

where t is time, and c is the sound speed. The acous-
tic source term, S, is given by S = (γ − 1)∂H

∂t , where
γ is the adiabatic coefficient of the gas, and H = κI is
the heat power density deposited in the gas [14]. Here κ
is the absorption per unit length along the laser beam
and I is the laser power density per unit cross sectional
area of the beam. We assume that the laser beam is
a Gaussian beam of constant width, σ. This assump-
tion is reasonable since the Rayleigh range of the beam
is about 20 mm whereas the thickness of the tuning
fork is less than 1 mm, and so the width of the beam
is approximately constant in the vicinity of the tuning
fork. Therefore, the laser power density is of the form
I(r) = WLg(r), where g(r) = exp(−r2/2σ2)/2πσ2 is the
normalized power density and WL is the laser power.
Here r is the radial distance from the axis of the beam.

QEPAS systems use either wavelength- or amplitude-
modulated lasers. In this work, we modulate the wave-
length of the laser back and forth across the absorp-
tion line of the gas to be detected, which we model as
λ(t) = λc + λamp sin(2πft/2), where λamp is the am-
plitude of oscillation about central wavelength λc. The
frequency of this oscillation is chosen to be half the res-
onant frequency, f , of the tuning fork. If we let κ̃(λ)
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denote the absorption spectrum of the gas, then the ab-
sorption of laser radiation is described by κ(t) = κ̃(λ(t)).
A QTF is a sharply resonant receiver and can detect only
signals whose frequency is at or very close to the reso-
nance frequency, f . Therefore, we consider only the sec-
ond Fourier component, κf , of κ, which can be expressed
as

κf (t) =
κeff

2
cos(2πft− φ),

where

κeff =
2
T

∣∣∣∣∣
∫ T

−T

κ(t) exp(2πift)dt

∣∣∣∣∣
=

2
π

∣∣∣∣∫ π

−π

κ̃(λc + λamp sin s) exp(2is)ds

∣∣∣∣ , (2)

where T = 1
f . Eq. (2) shows that κeff does not depend

on the modulation frequency, f . We assume that φ = 0,
since in the experiments κ̃(λ) is symmetric about λ = λc

when λc − λamp ≤ λ ≤ λc + λamp, and so κf (t) is even.
We choose the source function S in (1) to be

S = W exp(−r2/2σ2) exp(iωt), (3)

where ω = 2πf and

W = −(γ − 1)
κeff

2
WL

2πσ2
ω, (4)

so that the pressure wave is given by the imaginary part
of the solution of (1).

In the case of amplitude modulation, (4) is replaced
by W = −(γ − 1)(κ̃(λc)/2)(Wmax/2πσ2)ω, where Wmax

is the maximum laser power. If κ̃ is a Lorentzian with
a full-width at half-maximum of λFWHM, the maximum
value of κeff is 70% of κ̃(λc) and occurs when λamp =
1.1λFWHM.

Because the frequency width of the resonance of the
tuning fork is extremely narrow (the Q-factor exceeds
10,000) and because of the cylindrical symmetry of the
Gaussian beam it is sufficient to work with a steady-
state solution of (1) of the form P (r, t) = p(r) exp(iωt).
Substituting P into (1) we obtain the inhomogeneous
Bessel equation of order 0,

∂2p

∂r2
+

1
r

∂p

∂r
+ k2p = Q(r) , (5)

where k = ω/c and Q(r) = −(W/c2) exp(−r2/2σ2). To
obtain a solution that is finite and unique we impose

the boundary conditions |p(0)| < ∞ and lim
r→∞

√
r

(
dp

dr
+

ikp

)
= 0. The second condition is known as the Som-

merfeld radiation condition, which ensures that the pres-
sure wave is moving outward [15].

Using the method of variation of parameters, we find
that the general solution of (5) can be expressed in terms
of the Hankel functions H

(1)
0 and H

(2)
0 [16] as

p(r) = [B1+c1(r)]H
(1)
0 (kr)+[B2+c2(r)]H

(2)
0 (kr), (6)

where

c1(r) = −πi

4

∫ r

0

sH
(2)
0 (ks)Q(s)ds,

c2(r) =
πi

4

∫ r

0

sH
(1)
0 (ks)Q(s)ds.

Making use of the boundary conditions, we find that
B1 = B2 = − lim

r→∞
c1(r), and so the solution of (1) is

P (r, t) = p(r) exp(iωt) = [f1(r)−if2(r)] exp(iωt), (7)

where

f1(r) =
−πW

2c2

[(∫ ∞

r

sY0(ks) exp(−s2/2σ2)ds

)
J0(kr)

+
(∫ r

0

sJ0(ks) exp(−s2/2σ2)ds

)
Y0(kr)

]
,

(8)

f2(r) =
πW

2c2

(∫ ∞

0

sJ0(ks) exp(−s2/2σ2)ds

)
J0(kr).

(9)

Here J0 and Y0 are the zeroth order Bessel functions of
the first and second kind respectively [16]. Then, taking
the imaginary part of (7), the acoustic pressure wave is
given by

P (r, t) = A(r) sin(ωt− θ(r)), (10)

where A(r) =
√

f1(r)2 + f2(r)2, and θ(r) = arctan f2(r)
f1(r)

are the amplitude and phase respectively.
To more readily identify how the pressure depends on

radial distance, r, from the axis of the beam and on the
width, σ, of the beam we approximate the integrals (8)
and (9) by using the change of variables u = ks to obtain

f1(r) =
−πW

2c2k2
[g(r, k)J0(kr) + h(r, k)Y0(kr)] ,

f2(r) =
πW

2c2k2
h(∞, k)J0(kr), (11)

where

g(r, k) =
∫ ∞

kr

uY0(u) exp(−u2/2(kσ)2)du,

h(r, k) =
∫ kr

0

uJ0(u) exp(−u2/2(kσ)2)du. (12)

When r � σ,

f1(r)−if2(r) ≈
−πW

2c2k2
h(∞, k) [Y0(kr) + iJ0(kr)] . (13)
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Using the degree one Taylor approximation uJ0(u) ≈ u
we conclude that when r � σ, (10) is well approximated
by

P (r, t) ≈ A

[
J0

(
ωr

c

)
cos(ωt)+Y0

(
ωr

c

)
sin(ωt)

]
, (14)

where

A = (γ − 1)ωκeffWL/8c2. (15)

Equation (15) illustrates an important difference between
the optically generated sound in unbounded space and in
an enclosed volume (such as an acoustic resonator). It is
well known that the amplitude of the photoacoustic wave
in an enclosed cell scales as 1/ω [9], whereas in (15) the
amplitude scales proportional to ω. The physical reason
for this difference is that in an enclosed cell the optical
energy absorbed by the gas is accumulated in the cell,
i.e., it is integrated over the duration of the modulation
period. Therefore, the pressure amplitude is proportional
to 1/ω. On the other hand, in unbounded space the en-
ergy is constantly carried away by the outgoing sound
wave, and so the acoustic pressure is proportional to the
speed of the optical power variation, and hence to ω.
In experiments the width of the laser beam is narrow
compared to the gap between the tines of the tuning
fork. Therefore, as we will demonstrate in Section 3, we
can use (14) to accurately compute the pressure wave in
the vicinity of the tines. The approximation in (14) is
the general form of an outgoing cylindrically symmetric
pressure wave far from its source [14]. Equations (10)
and (14) enable us to examine the range of validity of
this approximation and to determine how the amplitude
A depends on the parameters in the model. In particu-
lar (14) shows that A is proportional to the modulation
frequency ω, and is independent of the beam width σ
when r � σ.

2.2 Model for the vibration of the tuning fork

The acoustic pressure wave generated by the absorption
of the optical energy causes the tines of the tuning fork
to vibrate. In this section we present the second stage
of the model, namely that which describes the motion
of the tines. We regard the quartz tuning fork as a sys-
tem of two weakly coupled beams, which we approximate
as a pair of independent cantilevers each with a fixed
end [10,17]. As such, the tuning fork has two vibrational
modes that correspond to in-plane motion of the tines,
each with a different natural frequency. The electrodes
of the quartz tuning fork are configured in such a way
that only the symmetric mode (in which the tines move
symmetrically with respect to the plane of symmetry
of the tuning fork) induces an electrical signal. In the
experimental system we center the acoustic source on
the y-axis shown in Fig. 1 and we select the resonance
frequency corresponding to the symmetric mode. When

Fig. 1 The dimensions and coordinate system of the tuning
fork. The origin of the x-axis is centered between the tines
and the origin of the y-axis is at the junction of the tuning
fork.

operated in this manner the QEPAS sensor is immune to
background acoustic noise sources on either side of the
tuning fork.

Let y denote the distance along the axis of a tine of
the tuning fork from its base as shown in Fig. 1, and let
u(y, t) be the displacement at time t of a point at position
y. Since the displacement is close to zero near the base of
the tuning fork we regard the two tines of the tuning fork
as vibrating independently of each other. Furthermore,
because the length of the tine, L, is considerably larger
than its width, W , and thickness, T , (see Fig. 1) we can
regard each tine as a vibrating one-dimensional beam
(cantilever). We assume that the beam is stationary at
y = 0 and that the top of the beam is at y = L.

The damped motion of a vibrating beam is described
by Euler-Bernoulli equation [18],

EI

ρA

∂4u

∂y4
+ 2β

du

dt
+

∂2u

∂t2
=

1
ρA

f(y, t). (16)

The parameters of a tine are Young’s modulus, E, the
second moment of area, I, the cross-sectional area, A =
TW , the damping coefficient, 2β, and the density of
quartz, ρ. Since the beam is fixed at y = 0 and free
at y = L, we use the boundary conditions u(0, t) = 0,
∂u
∂y (0, t) = 0, i.e., the displacement and slope at the fixed

end are zero, and ∂2u
∂y2 (L, t) = 0 and ∂3u

∂y3 (L, t) = 0,

i.e., the bending moment EI ∂2u
∂y2 and the shear force

∂
∂y

(
EI ∂2u

∂y2

)
at the free end are zero [18].

The force density f(y, t) on the right tine is given by
the difference between the acoustic pressure at the inner
and outer surfaces of the tine multiplied by the thickness
of the tine, namely

f(y, t) = T

[
P

(
g

2
, y, t

)
− P

(
W +

g

2
, y, t

)]
. (17)

Here T is the thickness of the tine, g is the gap between
the tines of the tuning fork, and P = P (x, y, t) is the
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acoustic pressure in the cartesian coordinate system of
the tuning fork. A formula for the pressure P in the polar
coordinate system (r, θ) of the laser beam was derived in
Section 2.1 and is given by (10). For simplicity we assume
that the laser beam is symmetrically centered between
the tines on the y-axis at height y = y0. Using the coor-
dinate transformation (x, y) = (r cos θ, y0 + r sin θ) and
the decomposition P (r, t) = p(r) exp(iωt) in (7), we find
that the force density can be expressed in terms of the
laser beam position, y0, as

f(y, t; y0) = f(y; y0) exp(iωt) = T [p(ri)−p(ro)] exp(iωt),
(18)

where

ri =
[
( g
2 )2+(y−y0)2

]1/2
, ro =

[
(W + g

2 )2+(y−y0)2
]1/2

.

Following [18,19], the solution u of (16) is given by

u(y, t) =
∞∑

n=1

Bn(y0) exp[i(ωt− δn(y0))]Φn(y), (19)

where Φn(y) is the n-th eigenfunction of (16) with eigen-
frequency ωn, as given in [18]. Here,

Bn(y0) =
|Mn(y0)|√

(ω2
n − ω2)2 + 4(β ω)2

,

and

tan(δn(y0)) =
2βω<(Mn)− (ω2

n − ω2)=(Mn)
2βω=(Mn) + (ω2

n − ω2)<(Mn)
,

where < and = denote real and imaginary parts, and

Mn(y0) =
1

ρA

∫ L

0
f(y; y0)Φn(y)dy∫ L

0
Φ2

n(y)dy
. (20)

We choose the forcing frequency, ω, to be equal to
the frequency of the symmetric vibration of the tuning
fork tines in the x direction. Since the tuning fork res-
onances are sharp, the displacement of each tine due to
the acoustic pressure wave is given by

u(y, t) =
|M1(y0)|

2βω
Φ1(y) sin(ωt− δ1(y0)), (21)

where we have used the approximation ω1 = ω.

2.3 Model of the piezoelectric response of the tuning
fork

In the third stage of the model, we describe the relation
between the amplitude of the oscillation of the end of a
tine and the piezoelectric signal induced by the vibration
of the two tines [11,12].

The relationship between the charge q(t) generated
on one tine of the tuning fork and the deflection uL(t) =
u(L, t) of its endpoint is given by q = αuL, where α is

the effective piezoelectric coupling constant. Since we are
assuming that the laser beam is centered on the plane
of symmetry of the tuning fork, the maximum piezoelec-
tric current, I, generated by the two tines of the tuning
fork is I = 2αv, where v is the maximum velocity of
the endpoint of a tine. To determine α we first observe
that by (21) the deflection uL satisfies a damped spring-
mass equation. As in [11] we choose the effective mass
me of this spring-mass system so that the maximum to-
tal kinetic energy of the tine is (1/2)mev

2. Therefore
me = m(1/L)

∫ L

0
Φ2

1(y)dy/Φ2
1(L) ' 0.25m, where m is

the physical mass of the tine. The effective spring con-
stant is defined by ke = meω

2, where ω is the resonance
frequency of the tine. When making measurements we
regard the tuning fork as an RLC circuit with electrical
parameters R,L, and C [12]. Since energy is conserved,
the piezoelectric current, I, is also related to the com-
mon speed v of the endpoints by 2(mev

2/2) = LI2/2.
Therefore, L = me/2α2, and since ω2 = ke/me = 1/LC,
we have C = 2α2/ke. Since the quality factor can be ex-
pressed in terms of both the mechanical and electrical
parameters as Q = ω/2β =

√
L/C/R, we conclude that

α =
√

meω/2QR, which can be obtained from measured
values of the quality factor Q and resistance R. Finally,
by (21), when the laser is centered at y = y0 on the
y-axis the maximum piezoelectric current is

I(y0) =
αΦ1(L)

β
|M1(y0)|. (22)

3 Results

3.1 Experimental setup

We performed two sets of experiments to validate the
model. For the first set we used a standard QTF with a
resonance frequency of 32.8 kHz and for the second set
we compared the standard QTF to a large QTF with a
resonance frequency of 4.25 kHz. The dimensions and pa-
rameters of the tuning forks are listed in Table 1. Young’s
modulus and the density of quartz are E = 78.7 GPa and
ρ = 2.6× 103 kg/m3, respectively [17].

In both sets of experiments, a laser beam was di-
rected between the tines of the tuning fork at a verti-
cal position y0 on the symmetry axis of the fork (see
Fig. 1). The beam waist radius was estimated to be
σ = 0.05 mm. The diode laser injection current was mod-
ulated at half the resonance frequency of the tuning fork,
as is done in most QEPAS detection schemes utilizing 2f
wavelength modulation spectroscopy.

For the first set of experiments, the QTF was en-
closed in a cylindrical optical gas cell and measurements
were performed using a 1000 ppmv NH3:N2 gas mixture.
The optical frequency of the diode laser was centered
on the 6528.80 cm−1 NH3 absoption line. The speed of
sound in N2 at room temperature is c = 346 m/s and
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Parameter SI unit Standard Large
f kHz 32.8 4.25
L mm 3.8 20
T mm 0.34 0.79
W mm 0.6 1.95
g mm 0.3 1.24
I = TW 3

12 m4 6.12× 10−15 4.88× 10−13

Table 1 Dimensions and parameters of the standard and
large tuning forks: f (frequency), L (length), T (thickness),
W (width), g (gap), I (second moment of area).

Parameter SI unit 450 Torr 60 Torr
f kHz 32.761 32.764
Q - 16064 28887
R kΩ 111 62
α C/m 7× 10−6 7× 10−6

WL mW 61.7 62.1
κeff cm−1 1.31× 10−4 9.57× 10−4

Table 2 Measured physical parameters for experiments per-
formed using a 32.8 kHz tuning fork: f (modulation fre-
quency), Q (quality factor),R (resistance), α (effective piezo-
electric coupling constant), WL (laser power), and κeff (effec-
tive absorption coefficient).

the adiabatic coefficient of N2 is γ = 1.4. The experi-
ments were performed at total gas pressures of 450 Torr
and 60 Torr. The measured QTF parameters for these
two pressures and the derived effective piezoelectric cou-
pling constant, α, are shown in Table 2, together with
the value of κeff calculated using (2). The calculation of
the effective absorption coefficient was based on spec-
troscopic data from Webber et al. [20]. Simulated ab-
sorption spectra based on these parameters show some
discrepancy with experimental observations; in partic-
ular, pressure-induced shifts appear to be present. We
compared the signal produced by our NH3 mixture with
the signal generated by 10 ppmv C2H2:N2 gas when a
well-characterized 6523.87 cm−1 line (P(13) of ν1 + ν3

band) is excited. In both cases, the optimum wavelength-
modulation width, λamp, and the corresponding maxi-
mum value of κeff were calculated for a total pressure of
450 Torr based on the available data (Webber et al. [20]
for NH3 and the HITRAN 2004 database for C2H2).
Then the actual experimental measurements were per-
formed and the measured QEPAS signals compared. The
agreement between the ratio of the calculated κeff and
the observed signals is within 20%.

Since the large QTF did not fit into the available
optical gas cell, the second set of experiments was per-
formed in the open, using the ambient moisture (typi-
cally 50% relative humidity at +24◦ C) and a diode laser
centered on the 7306.75 cm−1 H2O absorption line.

3.2 Theoretical and experimental results

We begin by comparing the acoustic pressure waves gen-
erated using the two modulation frequencies. In the top
half of Fig. 2 we plot the amplitude and in the bottom
half we plot the phase of the acoustic pressure wave as a
function of the radial distance, r, from the center of the
laser beam. The solid and dashed curves show the results
for the 32.8 kHz and 4.25 kHz modulation frequencies,
respectively, obtained from (8)–(10) using numerical in-
tegration. For both modulation frequencies we used the
measured values of the laser power, WL, and effective
absorption coefficient, κeff, at 450 Torr given in Table 2.
We observe that the amplitude of the acoustic pressure
is larger for the 32.8 kHz than for the 4.25 kHz modu-
lation frequency. The dotted curves show the approxi-
mation (14) of the exact solution (10) for the 32.8 kHz
modulation frequency. This result shows that the ap-
proximation (14) is valid for r > 0.1 mm. Since the gap
g between the tines satisfies g/2 ≥ 0.15 mm, we can
use (14) to calculate the pressure wave in the vicinity
of the tines of the tuning fork. These results are used in
the second stage of the model to calculate the vibration
of the tines of the tuning fork.

In previous experimental work, Kosterev et al. [4]
found that the response of the 32.8 kHz tuning fork was
largest when the laser beam was centered between the
tines and positioned 0.7 mm below the opening of the
tuning fork (y0 = 3.1 mm). In the top half of Fig. 3 we
show the normalized amplitude and in the bottom half
we show the phase of the piezoelectric current as func-
tions of the laser beam position, y0. The experimental
results were obtained from the first set of experiments us-
ing the NH3:N2 mixture. We show the theoretical results
computed using (22) with solid lines, the experimental
data measured at 450 Torr with dots, and the experimen-
tal data measured at 60 Torr with crosses. We separately
normalized the three amplitude curves in the top half of
Fig. 3 to have maximum values of 1. The theoretical
normalized amplitude and phase are independent of the
ambient pressure. The theoretical and experimental nor-
malized amplitudes agree extremely well. In particular,
the theory confirms the experimentally observed optimal
position of the laser beam. In the bottom half of Fig. 3
we show that the theoretically computed phase of the
current is in excellent agreement with the experimental
data at 450 Torr over the interval 1.25 < y0 < 3.75.

The phase lag at 60 Torr is explained by the vibra-
tional to translational (V-T) energy transfer delay from
the optically excited state of NH3. In the case of a single-
step population decay with time constant, τ , the phase
lag, θ, due to V-T relaxation is given by tan θ = ωτ [21].
From the experimental data, θ = 15◦, as measured near
y0 = 3.2 mm. The τ value derived from a 15◦ phase
lag is 1.24 µs. Therefore, the V-T relaxation time con-
stant is τP = 98 ns·atm, and the coresponding rate con-
stant is kV-T = 4.3× 10−13 cm3/molecule·s. We did not
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Fig. 2 The amplitude (top) and phase (bottom) of the
acoustic pressure wave as a function of the radial distance
r from the center of the laser beam. The solid and dashed
curves shows the results for the 32.8 kHz and 4.25 kHz modu-
lation frequencies, respectively, as computed using the exact
formulae (8)–(10). The dotted curves show the result for the
32.8 kHz modulation frequency computed using the approx-
imation (14) of (10). The solid and dotted curves overlap for
r > 0.1 mm.

find the V-T relaxation rate from this state reported
in the literature. However, in [22] the relaxation rate
from the ν2 excited state of NH3 in N2 was measured
as kV-T = 3.6 × 10−13 cm3/molecule·s. Therefore, our
results are realistic.

In Table 3, we show the maximum amplitude of the
piezoelectric current for the 32.8 kHz tuning fork. In ab-
solute units the theoretically calculated amplitudes are
about two times smaller than the measured values. We
do not know whether this discrepancy is due to a miss-
ing factor of two in the theory, errors in the parameter
values, or physical limitations of the model.

For the second set of experiments we did not make
absolute measurements of the signal strength. Rather,
the experiments for the 4.25 kHz and 32.8 kHz tun-
ing forks were performed under identical conditions and
the ratio of the signal strengths was calculated. Con-
sequently, in this case we did not need to measure the
effective absorption coefficient of the gas. The effective
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Fig. 3 Normalized amplitude (top) and phase (bottom) of
the piezoelectric current as functions of the vertical position,
y0, of the laser beam for a QEPAS sensor with a 32.8 kHz
tuning fork. The theoretical results are shown with solid lines,
and the experimental data measured at 450 Torr and 60 Torr
are shown with dots and crosses, respectively. These results
are from the first set of experiments using the NH3:N2 mix-
ture.

Pressure Theory Experiment
(Torr) (pA) (pA)
60 45.2 81.6
450 35.0 72.3

Table 3 The theoretical and experimental maximum ampli-
tudes of the piezoelectric current.

piezoelectric coupling constant of the 4.25 kHz tuning
fork was found to be α = 8.88 × 10−6 C/m. The theo-
retical normalized amplitude and the phase of the cur-
rent are very similar to the results we obtained for the
32.8 kHz tuning fork except that the optimal beam po-
sition is at y0 = 17.5 mm (2.5 mm below the opening).
In these experiments, the maximum amplitude was 2.2
times larger for the 32.8 kHz than for the 4.25 kHz tun-
ing fork, while the theoretically computed ratio was 2.9.
We conclude that, in a QEPAS sensor with this sim-
ple configuration, it is preferable to use the 32.8 kHz
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rather than the 4.25 kHz QTF we had available, since
the 32.8 kHz QTF not only produces a stronger signal
but is more compact in size and is less susceptible to
environmental acoustic noise.

4 Conclusions

We developed a theoretical model for a QEPAS sensor
that enables the piezoelectric signal to be expressed in
terms of the optical, mechanical, and electrical parame-
ters of the system. To derive an analytical solution for
this model we used several physically reasonable assump-
tions to simplify the geometry of the problem and reduce
the governing partial differential equations to ordinary
differential equations. In particular, we ignored the effect
the tuning fork has on the acoustic pressure wave, and
we assumed that the piezoelectric response of the tuning
fork can be obtained by modeling each tine individually.
In spite of these simplying assumptions, we obtain ex-
cellent agreement between theory and experiments. The
model accurately predicts the optimal location of the
laser beam relative to the tuning fork, the phase of the
piezoelectric current relative to that of the optical radi-
ation, and the dependence of the signal strength on the
laser modulation frequency.

In future work, we will extend the model to describe
a QEPAS sensor in which a weak resonator consisting
of a pair of cylindrical tubes is added on either side of
the tuning fork to enhance the sensitivity of the sensor.
This extension will require us to numerically solve the
acoustic wave equation in three spatial dimensions with
appropriate boundary conditions. The resulting acoustic
pressure field will then be input into the tuning fork
model described in this paper. This approach will also
enable us to study any effects that the tuning fork has
on the acoustic wave. Future extensions to the model
described in this paper will enable us to further optimize
QEPAS sensor design. Nonetheless, this paper provides
the basis for future models.
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